Влияние серебра на полярность основы гидрофобного матрикса биомембран
- Авторы: Пчёлкин В.П.1
-
Учреждения:
- ФГБУН Институт физиологии растений имени К. А. Тимирязева Российской академии наук
- Выпуск: Том 72, № 1 (2025)
- Страницы: 3-15
- Раздел: ОБЗОРЫ
- URL: https://journals.eco-vector.com/0015-3303/article/view/685696
- DOI: https://doi.org/10.31857/S0015330325010015
- EDN: https://elibrary.ru/KJJAXC
- ID: 685696
Цитировать
Аннотация
Проведена количественная оценка вариаций реальных значений гидрофобности отдельных молекул главных классов ненасыщенных липидов при появлении в окружении последних серебра и его солей. Отражены те главные достижения последних лет, где наноразмерные структуры кластеров серебра в процессах своего взаимодействия с молекулами природного происхождения разной степени ненасыщенности формировали с его ионами устойчивые координационные комплексы. Описаны результаты этих взаимодействий с главными классами ненасыщенных липидов биологических структур и даны примеры плодотворной эксплуатации уникальных свойств таких комплексов с целью улучшения рабочих параметров тех аналитических приборов и инструментов, которые сейчас наиболее часто применяют в базовых областях биохимии и генетики.
Ключевые слова
Полный текст

Об авторах
В. П. Пчёлкин
ФГБУН Институт физиологии растений имени К. А. Тимирязева Российской академии наук
Автор, ответственный за переписку.
Email: pchel_vp@ippras.ru
Россия, Москва
Список литературы
- Tanabe S., Hirata K., Tsukiyamai K., Lisy J.M., Ishiuchi S. Can Ag+ Permeate through a potassium ion channel? A bottom-up approach by infrared spectroscopy of the Ag+ complex with the partial peptide of a selective filter // J. Phys. Chem. Lett. 2023. V. 14. P. 2886. https://doi.org/10.1021/acs.jpclett.2c03366
- Jiang Y., Cui J., Zhang T., Wang M., Zhu G., Miao P. Electrochemical detection of T4 polynucleotide kinase based on target-assisted ligation reaction coupled with silver nanoparticles // Anal. Chim. Acta. 2019. V. 1085. P. 85. https://doi.org/10.1016/j.aca.2019.07072
- Chen W.-T., Cheng Y.-W., Yang M.-C., Jeng R.-J., Liu T.-Y., Wang J.-K., Wang Y.-L. Mesoporous silica nanospheres decorated by Ag-nanoparticle arrays with 5 nm interparticle gap exhibit insignificant hot-spot raman enhancing effect // J. Phys. Chem. C. 2019. V. 123. P. 18528. https://doi.org/10.1021/acs.jpcc.9b04074
- Lyu D., Li J., Wang X.W., Guo W., Wang E. Cationic-polyelectrolyte-modified fluorescent DNA-silver nanoclusters with enhanced emission and higher stability for rapid bioimaging // Anal. Chem. 2019. V. 91. P. 2050. https://doi.org/10.1021/acs.analchem.8b04493
- Zhang Y., Yang C., He J., Li M., Yan R., Xu W. Ratiometric fluorescence biosensing of tandem biemissive Ag clusters boosted by confined catalytic DNA assembly // Anal. Chem. 2023. V. 95. P. 17928. https://doi.org/10.1021/acs.analchem.3c04388
- Setzler C.J., Arrington C.A., Lewis D., Petty J.T. Breaching the fortress: photochemistry of DNA-caged // J. Phys. Chem. 2023. V. 127. P. 10851. https://doi.org/10.1021/acs.jpcb.3c06358
- Ramazanov R.R., Nasibullin R.T., Sundholm D., Kurtén T., Valiev R.R. Nonradiative deacytivation of the fluorescent -DNA and -DNA emitters: the role of water // J. Phys. Chem. Lett. 2024. V. 15. P. 10710. https://doi.org/10.1021/acs.jplett.4c01959
- Luo J.C., Liu T.B. Competition and cooperation among different attractive forces in solutions of inorganic-organic hybrids containing macroionic clusters // Langmuir. 2019. V. 35. P. 7603. https://doi.org/10.1021/acs.langmuir.9b00480
- Sych T.S., Buglak A.A., Reveguk Z.V., Pomogaev V.A., Ramazanov R.R., Kononov A.I. Which amino acids are capable of nucleating fluorescent silver clusters in proteins? // J. Phys. Chem. C. 2018. V. 122. P. 26275. https://doi.org/10.1021/acs/jpcc.8b08907
- van der Linden M., van Bunningen A.J., Delgado-Jaime M.U., Detlefs B., Glatzel P., Longo A., de Groot F.M.F. Insights into the synthesis mechanism of nanoclusters // J. Phys. Chem. C. 2018. V. 122. P. 28351. https://doi.org/10.1021/acs/jpcc.8b089360
- Ganji N., Khan I.A., Bothun G.D. Surface activity of poly(ethylene glycol)-coated silver nanoparticles in the presence of a lipid monolayer // Langmuir. 2018. V. 34. P. 2039. https://doi.org/10.1021/acs.langmuir.7b03743
- Hua X., Li H.W., Long Y.T. Investigation of silver nanoparticle induced changes on a single cell surface by time-of-flight secondary ion mass spectrometry // Anal. Chem. 2018. V. 90. P. 1072. https://doi.org/10.1021/acs.analchem.7b04591
- Zhu M., Lu K., Jin Y., Xu X., Chu C., Hao H., Zheng Q. Boronic derivatization-based strategy for monoacylglycerol identification, isomer annotation and quantification // Anal. Chim. Acta. 2021. V. 1190. P. 7. https://doi.org/10.1016/j.aca.2021.339233
- Chen Y., Wang T., Xie P., Song Y., Wang J., Cai Z. Mass spectrometry imaging alterations of lipid metabolites in multicellular tumor spheroids in response to hydroxychloroquine // Anal. Chim. Acta. 2021. V. 1184. P. 8. https://doi.org/10.1016/j.aca.2021.339011
- Xing R.R., Wen Y.R., Dong Y.R., Wang Y., Zhang Q., Liu Z. Dual molecularly imprinted polymer-based plasmonic immunosandwich assay for the specific and sentetive detection of protein biomarkers // Anal. Chem. 2019. V. 91. P. 9993. https://doi.org/10.1021/acs.analchem.9b01826
- Zhang C.-W., Wang C.-Z., Tao R., Ye J.-Z. Separation of polyprenols from Ginkgo biloba leaves by a nano silica-based adsorbent containing silver ions // J. Chromatogr. A. 2019. V. 1590. P. 58. https://doi.org/10.1016/j.chroma.2019.01.047
- Perera W.H., Frommenwiler D.A., Sharaf M.H.M., Reich E. An improved high-performance thin-layer chromatographic method to unambiguously assess Ginkgo biloba leaf finished products // J. Planar Chromatogr. ‒ Mod. TLC. 2021. V. 34. P. 559. https://doi.org/10.1007/s00764-021-00146-0
- Zhang W., Shi M.-M., Zhang F., Cao F., Su E. A facile method to determine the native contents of 4ʹ-O-Methylpyridoxine and 4ʹ-O-Methylpyridoxine-5ʹ-glucoside in Ginkgo biloba seeds // J. Agric. Food Sci. 2021. V. 69. P. 14270. https://doi.org/10.1021/acs.jafc.1c04937
- Menta S., Ciogli A., Villani C., Gasparrini F., Pierini M. Recognition mechanism of aromatic derivatives resolved by argentation chromatography: the driving role played by dubstituent groups // Anal. Chim. Acta. 2018. V. 1019. P. 135. 10.1016/j.aca.2018.02.038' target='_blank'>https://doi: 10.1016/j.aca.2018.02.038
- Wang L., Longo W.M., Dillon J.T., Zhao J., Zheng Y., Moros M., Huang Y. An efficient approach to eliminate steryl ethers and miscellaneous esters/ketones for gas chromatographic analysis of alkenones and alkenoates // J. Chromatogr. A. 2019. V. 1596. P. 175. https://doi.org/10.1016/jchroma.2019.02.064
- Liao S.-A., Dillon J.T., Huang C.-C., Santos E., Huang Y.-S. Silver (I)-dimercaptotriazine functionalized silica: a highly selective liquid chromatography stationary phase targeting unsaturated molecules // J. Chromatogr. A. 2021. V. 1645. P. 11. https://doi.org/10.1016/j.chroma.2021.462122
- Tsui H.-W., Lin S.-Z., Hsu Y.-C., Dai F.-J. Retention modeling and adsorption mechanisms in reversed-phase liquid chromatography // J. Chromatogr. A. 2021. V. 1662. P. 12. https://doi.org/10.1016/j.chroma.2021.462736
- Ping G.-C., Hou W.-P., Shi Q.-Q., Ding H.-J., Gong X., Li J.-M., Xu H. Preparation of monolithic silica and polymer capillary columns with ultrahigh column efficiencies and comparisons between van deemter plots of alkylbenzenes on these two kinds of columns // J. Chromatogr. Sci. 2022. V. 60. P. 7. https://doi.org/10.1093/chromsci/bmab027
- Wagner M., Oellig C. Screening for mineral oil hydrocarbons in vegetable oils by silver ion-planar solid phase extraction // J. Chromatogr. A. 2021. V. 1662. P. 10. https://doi.org/10.1016/j.chroma.2021.462732
- Lu H., Zhu H., Dong H., Guo L., Ma T., Wang X. Purification of pyrethrins from flowers of Chrisanthemum cineraraeeflium by high-speed counter-current chromatography based on coordination reaction with silver nitrate // J. Chromatogr. A. 2020. V. 1613. P. 7. https://doi.org/10.1016/j.chroma.2019.460660
- Fardin-Kia A.R. Preparation, isolation and identification of non-cojugated C18:2 fatty acid isomers // Chem. Phys. Lipids. 2016. V. 201. P. 50. https://doi.org/10.1016/j.chemphyslip.2016.10.003
- Han K., Zhong Z.-H., Zhang L., Hu Q.-Z., Ji W.-H., Liu S.-H. C18 reversed-phase liquid chromatography column coupled with ion chromatography: a method for the determination of trimethylamine hydrochloride residues in cationic etherifying agent // Chromatographia. 2022. V. 85. P. 83. https://doi.org/10.1007/s10337-021-04117-9
- Delmonte P., Milani A., Bhangley S. Structural determination and occurrence in aniflower oil of stearidonic acid Trans fatty acids // Lipids. 2018. V. 53. P. 255. https://doi.org/10.1002/lipd.12009
- Zheng Z., Dai Z., Cao Y. Isolation, purification of DPAn-3 from the seal oil ethyl ester // Eur. J. Lipid Sci. Technol. 2018. V. 120. P. 8. https://doi.org/10.1002/ejlt.201800225
- Yee S.M., Lorenz C.D. On the structure and flip-flop of free docosahexaenoic acid in a model human brain membrane // J. Phys. Chem. B. 2021. V. 125. P. 80387. https://doi.org/10.1021/acs.jpcb.1c03929
- Vahmani P., Rolland D.C., Gzyl K.E., Dugan M.E.R. Non-conjugated cis/trans 18:2 in beef fat are mainly Δ-9 desaturation products of trans-18:1 isomers // Lipids. 2016. V. 51. P. 1427. https://doi.org/10.1007/s11745-016-4207-0
- Dabrowska M., Sokalska K., Gumułka P., Binert-Kusztal Ż., Starek M. Quantification of omega-3 fatty acids in dietary supplements and cooking products available on the polish market by thin-layer chromatography-densitometry // J. Planar Chromatogr. ‒ Mod. TLC. 2019. V. 32. P. 13. https://doi.org/10.1556/1006.2019.32.1.2
- Kuksis A., Pruzanski W. Hydrolysis of glycerophosphocholine epoxides by human group IIA, V, and X secretory phospholipase // Lipids. 2021. V. 56. P. 521. https://doi.org/10.1002/lipd.12320
- Bazan N.G. Overview of how N32 and N34 elovanoids sustain sight by protecting retinal pigment epithelial cells and photoreceptors // J. Lipid Res. 2021. V. 62. P. 16. https://doi.org/10.1194/jlr.tr120001137
- Metelcová T., Vaňková M., Zamrazilová H., Hovhannisyan M, Staňková B., Tvrzická E., Hill M., Hainer V., Včelák J., Kunešjvá M. FADS1 gene polymorphism(s) and fatty acid composition of serum lipids in adolescents // Lipids. 2021. V. 56. P. 499. https://doi.org/10.1002/lipd.12317
- Wang C., Xu X., Qiu G., Ye W., Li Y., Harris R.A., Jiang C. Grou-targeting SERS screening of total benzodiazepines based on large-size (111) faceted silver nanosheets decorated with zinc oxide nanoparticles // Anal. Chem. 2021. V. 93. P. 3403. https://doi.org/10.1021/acs.analchem.0c04399
- Souza I.D., Nan H., Queiroz M.E.C., Anderson J.L. Tunable silver-containing stationary phases for multidimensional gas chromatography // Anal. Chem. 2019. V. 91. P. 4969. https://doi.org/10.1021/acs.analchem.9b00472
- Huang S., Claassen F.W., van Beek T.A., Chen B., Zeng J., Zuilhof H., Salentijn G.I.J. Rapid distinction and semiquantitative analysis of THC and CBD by silver-impregnated paper spray mass spectrometry // Anal. Chem. 2021. V. 93. P. 3794. https://doi.org/10.1021/acs.analchem.0c04270
- Zhu H., Ali I., Hussain H., Hussain M., Wang X.-B., Song X., Luo G., Zhang Z., Wang Z., Wang D. Extraction and purification of cis/trans asarone from Acorus tatarinowii Schott: accelarated solvent extraction and silver ion coordination high-speed counter-current chromatography // J. Chromatogr. A. 2021. V. 1643. P. 12. https://doi.org/10.1016/j.chroma.2021.462080
- Marno A.R., Thurbide K.B. Selective separation of polar unsaturated organics using a water stationary phase in gas chromatography // Chromatographia. 2022. V. 85. P. 105. https://doi.org/10.1007/s10337-021-04125-9
- Panickar R., Sobhan C.B., Chakravorti S. Highly efficient amorphous carbon sphere-based superhydrophobic and superoleophilic sponges for oli/water separation // Langmuir. 2021. V. 37. P. 12501. https://doi.org/10.1021/acs.langmuir.1c02307
- Yeh V., Goode A., Johnson D., Cowieson N., Bonev B.B. The role of lipid chains as determinants of membrane stability in the presence of styrene // Langmuir. 2022. V. 38. P. 1348. https://doi.org/10.1021/acs.langmuir.1c02332
- Białek A., Białek M., Lepionka T., Pachniewics P., Czauderna M. Oxysterols and lipidomic profile of myocardium of rats supplemented with pomengranate seed oil and/or bitter melon aqueous extract — cardio-oncological animal model research // Chem. Phys. Lipids. 2021. V. 235. P. 8. https://doi.org/10.1016/j.chemphyslip.2021.105057
- Zhang Y.-Q., Xie Y.-P., Lv W.-J., Hu C.-X., Xu T.-R., Liu X.-N., Zhang R.-F., Xu G.-W., Zhao X.-J. A high throughput lipidomics method and its application in atrial fibrilation based on 96-well plate pretreatment and liquid chromatography-mass spectrometry // J. Chromatogr. A. 2021. V. 1651. P. 8. https://doi.org/10.1016/j.chroma.2021.462271
- Hsieh M.K., Yu Y.L., Klauda J.B. All-atom modeling of complex cellular membranes // Langmuir. 2022. V. 38. P. 3. 10.1021/acs.langmuir.1c02084' target='_blank'>https://doi: 10.1021/acs.langmuir.1c02084
- Ingolfsson H.I., Bhatia H., Zeppelin T., Bennett W.F.D., Carpenter K.A., Hsu P.-C., Dharuman G., Bremer P.-T., Schiøtt B., Lightstone F.C., Carpenter T.S. Capturing biologically complex tissue-specific membranes at different levels of compositional complexity // J. Phys. Chem. B. 2020. V. 124. P. 7819. https://doi.org/10.1021/acs.jpcb.0c03368
- Smorygina A.S., Golysheva E.A., Dzuba S.A. Clustering of stearic acids in model phospholipid membranes revealed by double electron-electron resonance // Langmuir. 2021. V. 37. P. 13909. https://doi.org/10.1021/acs.langmuir.1c02460
- Hu L.-C., Xie G.-F., Lan Q., Yu Z., Hu L.-F., Zhu L. Quantitative UPLC–MS/MS to detect DMPC and DPPC applied to paraquat poisoning in cells and serum // Chromatographia. 2022. V. 85. P. 147. 10.1007/s10337-021-04113-z' target='_blank'>https://doi: 10.1007/s10337-021-04113-z
- Barker-Tejeda T.C., Villaseňor A., Gonzalez-Riano C., López-López, Á., Gradillas A., Barbas C. In vitro generation of oxidized standards for lipidomics. Application to major membrane lipid components // J. Chromatogr. A. 2021. V. 1651. P. 16. https://doi.org/10.1016/j.chroma.2021.46225
- Prithviray M., Kado T., Mayfield J.A., Young D.C., Huang A.D., Motooka D., Nakamura S., Siegrist M.S., Moody D.B., Morita Y.S. Tuberculostearic acid controls mycobacterial membrane compartmentalization // mBio. 2023. V. 14. P. 18. https://doi.org/10.1128/mbio.03396-22
- Nitschke P., Lodge S., Kimhofer T., Masuda R., Bong S.-H., Hall D., Schafer H., Spraul M., Pompe N., Diercks T., Bernado-Seisdedos G., Mato J.M., Millet O., Susic D., Henry A. et al. Supramolecular phospholipid biomarkers of inflammation in human serum // Anal. Chem. 2022. V. 94. P. 1333. https://doi.org/10.1021/acs.analchem.1c04576
- Kuksis A., Pruzanski W. Destruction of polyunsaturated alkyl/acyl and alkenyl/acyl glycerophosphocholine of plasma lipoproteins during incubation with group V and X phospholipase // Lipids. 2022. V. 57. P. 91. https://doi.org/10.1002/lipd.12333
- Pritzl S.D., Konrad D.B., Ober M.F., Richter A.F., Frank J.A., Nickel B., Trauner D., Lohmüller T. Optical membrane control with red light enabled by red-shifted phospholipids // Langmuir. 2022. V. 38. P. 385. https://doi.org/10.1021/acs.langmuir.1c02745
- Kim S., Li C., Farese R.V. Jr., Walther T.C., Voth G.A. Key factors governing initial stages of lipid droplet formation // J. Phys. Chem. B. 2022. V. 126. P. 453. https://doi.org/10.1021/acs.jpcb.1c09683
- Cabruja M., Priotti J., Domizi P., Papasdorf K., Kroetz D.L., Brunet A., Contrepois K., Snyder M.P. In-depth triacylglycerol profiling using Q-Trap mass spectrometry // Anal. Chim. Acta. 2021. V. 1184. P. 10. https://doi.org/10.1016/j.aca.2021.339023
- Groeneveld G., Dunkle M.N., Pursch M., Mes E.P.C., Schoenmakers P.J., Gargano A.F.G. Investigation of the effects of solvent-mismatch and immiscibility in normal-phase × aqueous reversed-phase liquid chromatography // J. Chromatogr. A. 2022. V. 1665. P. 12. https://doi.org/10.1016/j.chroma.2022.462818
- Byrdwell W.C. Comprehensive dual liquid chromatography with quadruple mass spectrometry () for analysis of Parnari Curatellifolia and other seed oil triacylglycerols // Anal. Chem. 2017. V. 89. P. 10537. https://doi.org/10.1021/acs.analchem.7b02753
- Byrdwell W.C., Kotapati H.K., Goldschmidt R., Jakubec P., Nováková L. Three-dimensional liquid chromatography with parallel second dimensions and quadruple parallel mass spectrometry for adult/infant formula analysis // J. Chromatogr. A. 2021. V. 1661. P. 20. https://doi.org/10.1016/j.chroma.2021.462682
- Kalpio M., Linderborg K.M., Fabritius M., Kallio H., Yang B. Strategy for stereospecific characterization of natural triacylglycerols using multidimensional chromatography and mass spectrometry // J. Chromatogr. A. 2021. V. 1641. P. 9. https://doi.org/10.1016/j.chroma.2021.461992
- Azemard C., Faure M.C., Stankic S., Chenot S., Ibrahim H., Laporte L., Fontaine P., Goldmann M., de Viguerie L. Influence of unsaturations on the organization and air reactivity of triglyceride monolayers // Langmuir. 2022. V. 38. P. 711. https://doi.org/10.1021/acs.langmuir.1c02613
- Macridachis J., Bayés-Garcia L., Calvet T. Solid phase behavior of mixture systems based on tripalmitoyl glycerol and monounsaturated triacylglycerols forming a molecular compound // Phys. Chem. Chem. Phys. 2022. V. 24. P. 3749. https://doi.org/10.1039/d1cp05361b
- Sovova H. Modelling of the triacylglycerol stereospecific composition of vegetable oils: I. comparison of model for triacylglycerol assembly // Eur. J. Lipid Sci. Technol. 2022. V. 124. P. 9. https://doi.org/10.1002/ejlt.202000392
- Zhang Y.-X., Zhao X.-B., Ha W., Zhang Y.-D., Shi Y.-P. Spatial distribution analysis of phospholipid in rice by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging // J. Chromatogr. A. 2021. V. 1651. P. 9. https://doi.org/10.1016/j.chroma.2021.462302
- Wang H., Falcoz S., Berteau J.P. Long-chain fatty acids in bones and their link to submicroscopic vascularization network: NMR assignment and relaxation studies under magic angle spinning conditions in intramuscular bones of atlantic herring fish // J. Phys. Chem. B. 2021. V. 125. P. 4585. https://doi.org/10.1021/acs.jpcb.1c00186
- Ren Q.-X., Ma Y.-F., Wang R.-C., Ma Y., Niu T.-J. Triacylglycerol composition of butterfat fractions determines its gastrointestinal fate and postprandial effects: lipidomic analysis of tri-, di-, and mono-acylglycerols and free fatty acids // J. Agric. Food Chem. 2021. V. 69. P. 11033. https://doi.org/10.1021/acs.jafc.1c03291
- Peterka O., Jirasko R., Vankova Z., Chocholouskova M., Wolrab D., Kulhanek J., Bures F., Holcapek M. Simple and reproducible derivatization with benzoyl chloride: improvement of sensitivity for multiple lipid classes in RP-UHPLC/MS // Anal. Chem. 2021. V. 93. P. 13835. https://doi.org/10.1021/acs.analchem.1c02463
- Xu T.R., Li H., Feng D.S., Dou P., Shi X., Hu Ch., Xu G. Lipid profiling of 20 mammalian cells by capillary microsampling combined with high-resolution spectral switching nanoelectrospray ionization direct-infusion mass spectrometry // Anal. Chem. 2021. V. 93. P. 10031. https://doi.org/10.1021/acs.analchem.1c00373
- Palyzová A., Řezanka T. Separation and identification of diacylglycerols containing branched chain fatty acids by liquid chromatography mass spectrometry // J. Chromatogr. A. 2021. V. 1635. P. 10. https://doi.org/10.1016/j.chroma.2020.461708
- Gahtori P., Varanasi S.R., Pandey R. Spectral response of interfacial water at different lipid monolayer interfaces upon interaction with charged gold nanoparticles // J. Phys. Chem. C. 2021. V. 125. P. 212345. https://doi.org/10.1021/acs.jpcc.1c06556
- Zivanovic V., Milewska A., Leosson K., Kneipp J. Molecular structure and interaction of lipids in the outer membrane of living cells based on surface-enhanced Raman scattering and liposome models // Anal. Chem. 2021. V. 93. P. 10106. https://doi.org/10.1021/acs.analchem.1c00964
- Bryant J.M., Malabanan M.M., Vanderloop B.H., Sherrod S.D., McLean J.A., Blind R.D. The acyl chains of phosphoinositide PIP3 alter the structure and function of nuclear receptor steroidogenic factor-1 // J. Lipid Res. 2021. V. 62. P. 14. https://doi.org/10.1016/j.jlr.2021.100081
- Ullah Q. Separation and analysis of heavy metal ions by thin-layer chromatography (TLC) – a mini-review (2000–2019) // J. Planar Chromatogr. — Mod. TLC. 2020. V. 33. P. 329. https://doi.org/10.1007/s00764-020-00048-7
- Huang S., Qui R., Fang Z., Min K., van Beek T.A., Ma M., Chen B., Zuilhof H., Salentijn G.I.J. Semiquantitative screening of THC analogues by silica gel TLC with Ag(I) retention zone and chromogenic smartphone detection // Anal. Chem. 2022. V. 94. P. 13710. https://doi.org/10.1021/acs.analchem.2c01627
- Pchelkin V.P. Characteristic parameters of unsaturated fatty acid residues upon liquid chromatography of their lipids into its silver ion media // Russ. J. Phys. Chem. 2025. V. 99. P. 283. https://doi.org/10.1134/S00360244247033X
- Plachká K., Gazárková T., Škop J., Guillarme D., Svec F., Novaková L. Fast optimization of supercritical fluid chromatography-mass spectrometry interfacing using prediction equations // Anal. Chem. 2022. V. 94. P. 4841. https://doi.org/10.1021//acs.analchem.2c00154
- Gao H., Bi S., Chai J., Tong Y., Tian M. 2024. ZIF-based boronic acid modified molecular imprinted polymers in combination of silver nanoparticles/glutathione coated graphene oxide adsorbent for the selective enrichment of ellagic acid // J. Chromatogr. A. V. 1714. P. 9. https://doi.org/10.1016/j.chroma.2023.464579
- Rathnakumar S., Bhaskar S., Sivaramakrishnan V., Kambhampati N.S.V., Srinivasan V., Ramamurthy S.S. Tecoma stans floral extract-based biosynthesis for enhanced surface plasmon-coupled emission and a preliminary study on fluoroimmunoassay // Anal. Chem. 2024. V. 96. P. 4005. https://doi.org/10.1021/acs.analchem.3c01441
- Ali Naghizadeh A., Mahmoudi Zarandi M., Khoshroo S.M.R., Hasanzadeh Davarani F. Investigating the effect of green silver nanoparticles on seed germination and physiological parameters of spinach (Spinacia oleracea L.) under salt stress // Russ. J. Plant Physiol. 2024. V. 71: 102. https://doi.org/10.1134/S102144372460586X
Дополнительные файлы
