Литературный обзор NBAS-ассоциированных патологий. Все ли найдены?

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Мутации в гене NBAS вызывают две группы заболеваний – SOPH-синдром и синдром детской печеночной недостаточности 2-го типа (ILFS2, RALF), отличающиеся клиническими проявлениями, течением и прогнозами. Проведен литературный обзор клинико-генетических аспектов данных патологий и молекулярной биологии белка NBAS, а конкретно ретроградного мембранного трафика и нонсенс-опосредованного распада РНК.

Об авторах

Л. Р. Жожиков

Северо-Восточный федеральный университет им. М.К. Аммосова, Медицинский институт

Автор, ответственный за переписку.
Email: leonid.zhozhikov@gmail.com
Россия, 677013, Якутск

Ф. Ф. Васильев

Северо-Восточный федеральный университет им. М.К. Аммосова, Медицинский институт

Email: leonid.zhozhikov@gmail.com
Россия, 677013, Якутск

Н. Р. Максимова

Северо-Восточный федеральный университет им. М.К. Аммосова, Медицинский институт

Email: leonid.zhozhikov@gmail.com
Россия, 677013, Якутск

Список литературы

  1. Maksimova N., Hara K., Nikolaeva I. et al. Neuroblastoma amplified sequence gene is associated with a novel short stature syndrome characterised by optic nerve atrophy and Pelger-Huet anomaly // J. Med. Genet. 2010. V. 47. № 8. P. 538–548. https://doi.org/10.1136/jmg.2009.074815
  2. Максимова Н.Р., Ноговицына А.Н., Куртанов Х.А., Алексеева Е.И. Популяционная частота и возраст мутации G5741 → A в гене NBAS, являющейся причиной SOPH-синдрома в республике Саха (Якутия) // Генетика. 2016. Т. 52. № 10. С. 1194–1201. https://doi.org/10.7868/S0016675816090101
  3. Haack T.B., Staufner C., Köpke M.G. et al. Biallelic mutations in NBAS cause recurrent acute liver failure with onset in infancy // Am. J. Hum. Genet. 2015. V. 97. № 1. P. 163–169. https://doi.org/10.1016/j.ajhg.2015.05.009
  4. Calvo P.L., Tandoi F., Haak T.B. et al. NBAS mutations cause acute liver failure: When acetaminophen is not a culprit // Ital. J. Pediatr. 2017. V. 43. № 1. P. 88. https://doi.org/10.1186/s13052-017-0406-4
  5. Aoki T., Ichimura S., Itoh A. et al. Identification of the neuroblastoma-amplified gene product as a component of the syntaxin 18 complex implicated in golgi-to-endoplasmic reticulum retrograde transport // Mol. Biol. Cell. V. 2009. V. 20. № 11. P. 2639–2649. https://doi.org/10.1091/mbc.e08-11-1104
  6. Longman D., Jackson-Jones K.A., Maslon M.M. et al. Identification of a localized nonsense-mediated decay pathway at the endoplasmic reticulum // Genes Dev. 2020. V. 34. № 15–16. P. 1075–1088. https://doi.org/10.1101/gad.338061.120
  7. Scott D.K., Board J.R., Lu X. et al. The neuroblastoma amplified gene, NAG: Genomic structure and characterisation of the 7.3 kb transcript predominantly expressed in neuroblastoma // Gene. 2003. V. 307. P. 1–11. https://doi.org/10.1016/S0378-1119(03)00459-1
  8. De Preter K., Speleman F., Combaret V. et al. Quantification of MYCN, DDX1, and NAG gene copy number in neuroblastoma using a real-time quantitative PCR assay // Mod. Pathol. 2002. V. 15. № 2. P. 159–166. https://doi.org/10.1038/modpathol.3880508
  9. Kaneko S., Ohira M., Nakamura Y. et al. Relationship of DDX1 and NAG gene amplification/overexpression to the prognosis of patients with MYCN-amplified neuroblastoma // J. Cancer Res. Clin. Oncol. 2007. V. 133. № 3. P. 185–192. https://doi.org/10.1007/s00432-006-0156-y
  10. Wimmer K., Zhu X.X., Lamb B.J. et al. Co-amplification of a novel gene, NAG, with the N-myc gene in neuroblastoma: 1 // Oncogene. Nature Publ. Group. 1999. V. 18. № 1. P. 233–238. https://doi.org/10.1038/sj.onc.1202287
  11. Anastasaki C., Longman D., Capper A. et al. Dhx34 and Nbas function in the NMD pathway and are required for embryonic development in zebrafish // Nucl. Acids Res. 2011. V. 39. № 9. P. 3686–3694. https://doi.org/10.1093/nar/gkq1319
  12. Longman D., Jackson-Jones K.A., Maslon M.M. et al. Identification of a localized nonsense-mediated decay pathway at the endoplasmic reticulum // Genes Dev. 2020. V. 34. № 15–16. P. 1075–1088. https://doi.org/10.1101/gad.338061.120
  13. Jing H., Takagi J., Liu J. et al. Archaeal surface layer proteins contain β propeller, PKD, and β helix domains and are related to metazoan cell surface proteins // Structure. 2002. V. 10. № 10. P. 1453–1464. https://doi.org/10.1016/S0969-2126(02)00840-7
  14. Palagano E., Zuccarini G., Prontera P. et al. Mutations in the neuroblastoma amplified sequence gene in a family affected by acrofrontofacionasal dysostosis type 1 // Bone. 2018. V. 114. P. 125–136. https://doi.org/10.1016/j.bone.2018.06.013
  15. Tagaya M., Arasaki K., Inoue H. et al. Moonlighting functions of the NRZ (mammalian Dsl1) complex // Front. Cell Dev. Biol. 2014. V. 2. https://doi.org/10.3389/fcell.2014.00025
  16. Travis S.M., DAmico K., Yu I.-M. et al. Structural basis for the binding of SNAREs to the multisubunit tethering complex Dsl1 // J. Biol. Chem. 2020. V. 295. № 30. P. 10125–10135. https://doi.org/10.1074/jbc.RA120.013654
  17. Ritelli M., Palagano E., Cinquina V. et al. Genome-first approach for the characterization of a complex phenotype with combined NBAS and CUL4B deficiency // Bone. 2020. V. 140. P. 115571. https://doi.org/10.1016/j.bone.2020.115571
  18. Staufner C., Haack T.B., Köpke M.G. et al. Recurrent acute liver failure due to NBAS deficiency: phenotypic spectrum, disease mechanisms, and therapeutic concepts // J. Inherit. Metab. Dis. 2016. V. 39. № 1. P. 3–16. https://doi.org/10.1007/s10545-015-9896-7
  19. Kishor A., Fritz S.E., Hogg J.R. Nonsense-mediated mRNA decay: The challenge of telling right from wrong in a complex transcriptome // WIREs RNA. 2019. V. 10. № 6. https://doi.org/10.1002/wrna.1548
  20. Isken O., Maquat L.E. The multiple lives of NMD factors: Balancing roles in gene and genome regulation // Nat. Rev. Genet. 2008. V. 9. № 9. P. 699–712. https://doi.org/10.1038/nrg2402
  21. Buchan J.R. mRNP granules // RNA Biol. 2014. V. 11. № 8. P. 1019–1030. https://doi.org/10.4161/15476286.2014.972208
  22. Staufner C., Peters B., Wagner M. et al. Defining clinical subgroups and genotype–phenotype correlations in NBAS-associated disease across 110 patients // Genet. Med. 2020. V. 22. № 3. P. 610–621. https://doi.org/10.1038/s41436-019-0698-4
  23. Geem D., Jiang W., Rytting H.B. et al. Resolution of recurrent pediatric acute liver failure with liver transplantation in a patient with NBAS mutation // Pediatr. Transplant. 2021. V. 25. № 7. P. e14084. https://doi.org/10.1111/petr.14084
  24. Fischer-Zirnsak B., Koenig R., Alisch F. et al. SOPH syndrome in three affected individuals showing similarities with progeroid cutis laxa conditions in early infancy // J. Hum. Genet. 2019. V. 64. № 7. P. 609–616. https://doi.org/10.1038/s10038-019-0602-8
  25. Li X., Cheng Q., Li N. et al. SOPH syndrome with growth hormone deficiency, normal bone age, and novel compound heterozygous mutations in NBAS // Fetal Pediatr. Pathol. 2018. V. 37. № 6. P. 404–410. https://doi.org/10.1080/15513815.2018.1509406
  26. Khoreva A., Pomerantseva E., Belova N. et al. Complex multisystem phenotype with immunodeficiency associated with NBAS mutations: reports of three patients and review of the literature // Front. Pediatr. 2020. V. 8. P. 577. https://doi.org/10.3389/fped.2020.00577
  27. Lenz D., Pahl J., Hauck F. et al. NBAS variants are associated with quantitative and qualitative NK and B cell deficiency // J. Clin. Immunol. 2021. V. 41. № 8. P. 1781–1793. https://doi.org/10.1007/s10875-021-01110-7
  28. Balasubramanian M., Hurst J., Brown S. et al. Compound heterozygous variants in NBAS as a cause of atypical osteogenesis imperfecta // Bone. 2017. V. 94. P. 65–74. https://doi.org/10.1016/j.bone.2016.10.023
  29. Petukhova D.A., Gurinova E.E., Sukhomyasova A.L. et al. Identification of a novel compound heterozygous variant in NBAS causing bone fragility by the type of osteogenesis imperfecta // Bioinformatics Research and Applications / Eds Cai Z. et al. Cham: Springer Intern. Publ. 2020. V. 12304. P. 38–43. https://doi.org/10.1007/978-3-030-57821-3_4
  30. Cotrina-Vinagre F.J., Rodríguez-García M.E., Martín-Hernández E. et al. Characterization of a complex phenotype (fever-dependent recurrent acute liver failure and osteogenesis imperfecta) due to NBAS and P4HB variants // Mol. Genet. Metab. 2021. V. 133. № 2. P. 201–210. https://doi.org/10.1016/j.ymgme.2021.02.007
  31. Ricci S., Lodi L., Serranti D. et al. Immunological features of neuroblastoma amplified sequence deficiency: Report of the first case identified through newborn screening for primary immunodeficiency and review of the literature // Front. Immunol. 2019. V. 10. P. 1955. https://doi.org/10.3389/fimmu.2019.01955
  32. Suzuki S., Kokumai T., Furuya A. et al. A 34-year-old Japanese patient exhibiting NBAS deficiency with a novel mutation and extended phenotypic variation // Eur. J. Med. Genet. 2020. V. 63. № 11. P. 104039. https://doi.org/10.1016/j.ejmg.2020.104039
  33. Kim K.W., Myers R.A., Lee J.H. et al. Genome-wide association study of recalcitrant atopic dermatitis in Korean children // J. Allergy Clin. Immunol. 2015. V. 136. № 3. P. 678–684. https://doi.org/10.1016/j.jaci.2015.03.030
  34. Zou J., Zhao Z., Zhang G. et al. MEFV, IRF8, ADA, PEPD, and NBAS gene variants and elevated serum cytokines in a patient with unilateral sporadic Meniere’s disease and vascular congestion over the endolymphatic sac // J. Otol. 2022. https://doi.org/10.1016/j.joto.2022.03.001
  35. Mallakmir S., Nagral A., Bagde A. et al. Mutation in the neuroblastoma amplified sequence gene as a cause of recurrent acute liver failure, acute kidney injury, and status epilepticus // J. Clin. Exp. Hepatol. 2019. V. 9. № 6. P. 753–756. https://doi.org/10.1016/j.jceh.2019.03.008
  36. Lipiński P., Greczan M., Piekutowska-Abramczuk D. et al. NBAS deficiency due to biallelic c.2809C > G variant presenting with recurrent acute liver failure with severe hyperammonemia, acquired microcephaly and progressive brain atrophy // Metab. Brain Dis. 2021. V. 36. № 7. P. 2169–2172. https://doi.org/10.1007/s11011-021-00827-z
  37. Dayan R.R., Bignall O.N.R. II, Johnson S. et al. Neuroblastoma amplified sequence gene mutations inducing acute kidney and liver injury in an adolescent female // Case Rep. Nephrol. Dial. 2020. V. 10. № 3. P. 117–123. https://doi.org/10.1159/000508784
  38. Costantini A., Valta H., Suomi A.-M. et al. Oligogenic inheritance of monoallelic TRIP11, FKBP10, NEK1, TBX5, and NBAS variants leading to a phenotype similar to odontochondrodysplasia // Front. Genet. 2021. V. 12. P. 680838. https://doi.org/10.3389/fgene.2021.680838
  39. Brauner R., Bignon-Topalovic J., Bashamboo A. et al. Pituitary stalk interruption syndrome is characterized by genetic heterogeneity // PLoS One. 2020. V. 15. № 12. P. e0242358. https://doi.org/10.1371/journal.pone.0242358
  40. Zhernakova D.V., Brukhin V., Malov S. et al. Genome-wide sequence analyses of ethnic populations across Russia // Genomics. 2020. V. 112. № 1. P. 442–458. https://doi.org/10.1016/j.ygeno.2019.03.007
  41. Nasif S., Contu L., Mühlemann O. Beyond quality control: The role of nonsense-mediated mRNA decay (NMD) in regulating gene expression // Semin. Cell Dev. Biol. 2018. V. 75. P. 78–87. https://doi.org/10.1016/j.semcdb.2017.08.053

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.


© Л.Р. Жожиков, Ф.Ф. Васильев, Н.Р. Максимова, 2023