Роль мобильных генетических элементов в формировании долговременной памяти
- Авторы: Мустафин Р.Н.1, Хуснутдинова Э.К.2
-
Учреждения:
- Башкирский государственный медицинский университет
- Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наук
- Выпуск: Том 60, № 4 (2024)
- Страницы: 3-19
- Раздел: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://journals.eco-vector.com/0016-6758/article/view/666939
- DOI: https://doi.org/10.31857/S0016675824040015
- EDN: https://elibrary.ru/crqapn
- ID: 666939
Цитировать
Аннотация
В ряде экспериментальных исследований оспорено значение синаптической пластичности и доказана роль транспозонов в консолидации памяти. Это обусловлено cis-регуляторным влиянием активированных мобильных генетических элементов на экспрессию генов, а также инсерциями в новые локусы генома вблизи участвующих в функционировании головного мозга генов. Транскрипты и белки эндогенных ретровирусов транспортируются в области синапсов дендритов и передают информацию для изменения экспрессии генов в соседние клетки за счет формирования вирусоподобных частиц в составе везикул. Благодаря этому обеспечивается взаимосвязь синаптической пластичности с ядерным кодированием, поскольку мобильные генетические элементы являются также драйверами эпигенетической регуляции за счет взаимосвязи с произошедшими от них некодирующими РНК. Проведенный нами анализ научной литературы позволил выявить роль 17 возникших от транспозонов микроРНК в нормальном формировании памяти. При нейродегенеративных заболеваниях с нарушением памяти нами выявлено изменение экспрессии 44 произошедших от мобильных генетических элементов микроРНК. Это свидетельствует о возможностях таргетного воздействия на патологическую активацию транспозонов при нейродегенеративных болезнях для восстановления памяти с использованием микроРНК в качестве инструментов.
Ключевые слова
Полный текст

Об авторах
Р. Н. Мустафин
Башкирский государственный медицинский университет
Автор, ответственный за переписку.
Email: ruji79@mail.ru
Россия, Уфа, 450008
Э. К. Хуснутдинова
Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наук
Email: ruji79@mail.ru
Россия, Уфа, 450054
Список литературы
- Ryan T.J., Roy D.S., Pignatelli M. et al. Engram cells retain memory under retrograde amnesia // Science. 2015. V. 348. P. 1007-1013. https://doi.org/10.1126/science.aaa5542
- Takeuchi T., Duszkiewicz A.J., Morris R.G. The synaptic plasticity and memory hypothesis: encoding, storage and persistence // Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013. V. 369 (1633). https://doi.org/10.1098/rstb.2013.0288
- Fila M., Diaz L., Szczepanska J. et al. mRNA Trafficking in the nervous system: A key mechanism of the involvement of activity-regulated cytoskeleton-associated protein (Arc) in synaptic plasticity // Neural Plast. 2021. V. 2021. https://doi.org/10.1155/2021/3468795
- Maag J.L.V., Panja D., Sporild I. et al. Dynamic expression of long noncoding RNAs and repeat elements in synaptic plasticity // Front. Neurosci. 2015. V. 9. P. 351. https://doi.org/10.3389/fnins.2015.00351
- Hegde A.N., Smith S.G. Recent developments in transcriptional and translational regulation underlying long-term synaptic plasticity and memory // Learn. Mem. 2019. V. 26. P. 307-317. https://doi.org/10.1101/lm.048769.118
- Buurstede J.C., van Weert L.T.C.M., Coucci P. et al. Hippocalmpal glucocorticoid target genes associated with enhancement of memory consolidation // Eur. J. Neurosci. 2022. V. 55. P. 2666–2683. https://doi.org/doi: 10.1111/ejn.15226
- Tan Y., Yu D., Busto G.U. et al. Wnt signaling is required for long-term memory formation // Cell Rep. 2013. V. 4. № 6. P. 1082–1089. https://doi.org/10.1016/j.celrep.2013.08.007
- Lukel C., Schumann D., Kalisch R. et al. Dopamine related genes differentially affect declarative long-term memory in healthy humans // Front. Behav. Neurosci. 2020. V. 14. https://doi.org/10.3389/fnbeh.2020.539725
- Kaltschmidt B., Kaltschmidt C. NF-KappaB in long-term memory and structual plasticity in the adult mammalian brain // Front. Mol. Neurosci. 2015. V. 8. https://doi.org/10.3389/fnmol.2015.00069
- Noyes N.C., Phan A., Davis R.L. Memory suppressor genes: modulating acquisition, consolidation, and forgetting // Neuron. 2021. V. 109. P. 3211–3227. https://doi.org/10.1016/j.neuron.2021.08.001
- Leach P.T., Poplawski S.G., Kenney J.W. et al. Gadd45b knockout mice exhibit selective deficits in hippocampus-dependent long-term memory // Learn. Mem. 2012. V. 19. P. 319–324. https://doi.org/10.1101/lm.024984.111
- Gontier G., Iyer M., Shea J.M. et al. Tet2 rescues age-related regenerative decline and enhances cognitive function in the adult mouse brain // Cell. Rep. 2018. V. 22. P. 1974–1981. https://doi.org/10.1016/j.celrep.2018.02.001
- Chalertpet K., Pin-On P., Aporntewan C. et al. Argonaute 4 as an effector protein in RNA-directed DNA methylation in human cells // Front. Genet. 2019. V.https://doi.org/10.3389/fgene.2019.00645
- Shomrat T., Levin M. An automated training paradigm reveals long-term memory in planarians and its persistence through head regeneration // J. Exp. Biol. 2013. V. 216. P. 3799–3810.
- Chen S., CaiD., Pearce K. et al. Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia // eLife. 2014. V. 3. https://doi.org/10.7554/eLife.03896
- Levine R.B. Changes in neuronal circuits during insect metamorphosis // J. Exp. Biol. 1984. V. 112. P. 27–44. https://doi.org/10.1242/jeb.112.1.27
- Halder R., Hennion H., Vidal R.O. et al. DNA methylation changes in plasticity genes accompany the formation and maintenance of memory // Nat. Neurosci. 2016. V. 19. P. 102–110. https://doi.org/10.1038/nn.4194
- Miller C.A., Gavin C.F., White J.A. et al. Cortical DNA methylation maintains remote memory // Nat. Neurosci. 2010. V. 13. P. 664–666.
- Jarome T.J., Lubin F.D. Epigenetic mechanisms of memory formation and reconsolidation // Neurobiol. Lerarn. Mem. 2014. V. 115. P. 116–127. https://doi.org/10.1016/j.nlm.2014.08.002.
- Mustafin R.N., Khusnutdinova E.K. The role of transposons in epigenetic regulation of ontogenesis // Russ. J. Developmental Biology. 2018. V. 49.
- Ashley J., Cody B., Lucia D. et al. Retrovirus-like Gag protein Arc1 binds RNA and traffics across synaptic boutons // Cell. 2018. V. 172. P. 262–274.
- Pastuzyn E.D., Day C.E., Kearns R.B. et al. The neuronal gene Arc encodes a repurposed retrotransposon Gag protein that mediates intercellular RNA transfer // Cell. 2018. V. 172. P. 275–288.
- Akhlaghpour H. An RNA-based theory of natural universal computation // J. Theor. Biol. 2022. V. 537. https://doi.org/10.1016/j.jtbi.2021.110984
- Kour S., Rath P.C. Long noncoding RNAs in aging and age-related diseases // Ageing Res. Rev. 2016. V. 26. P. 1–21. https://doi.org/10.1016/j.arr.2015.12.001
- Lu X., Sachs F., Ramsay L. et al. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity // Nat. Struct. Mol. Biol. 2014. V. 21. P. 423–425. https://doi.org/10.1038/nsmb.2799
- Johnson R., Guigo R. The RIDL hypothesis: Transposable elements as functional domains of long noncoding RNAs // RNA. 2014. V. 20. P. 959–976.
- Wei G., Qin S., Li W. et al. MDTE DB: A database for microRNAs derived from Transposable element // IEEE/ACM Trans. Comput. Biol. Bioinform. 2016. V. 13. P. 1155–1160.
- De Koning A.P., Gu W., Castoe T.A. et al. Repetitive elements may comprise over two-thirds of the human genome // PLoS Genetics. 2011. V. 7. e1002384.
- Feschotte C. Transposable elements and the evolution of regulatory networks // Nat. Rev. Genet. 2008. V. 9. P. 397–405. https://doi.org/10.1038/nrg2337
- Mustafin R.N. The Relationship between transposons and transcription factors in the evolution of eukaryotes // J. Evol. Biochem. Physiol. 2019. V. 55. P. 14–22.
- Zhang H., Li J., Ren J. et al. Single-nucleus transcriptomic landscape of primate hippocampal aging // Protein Cell. 2021. V. 12. P. 695–716. https://doi.org/10.1007/s13238-021-00852-9
- Muotri A.R., Marchetto M.C., Coufal N.G. et al. L1 retrotransposition in neurons is modulated by MeCP2 // Nature. 2010. V. 468. P. 443–446.
- Coufal N.G., Garcia-Perez J.L., Peng G.E. et al. L1 retrotransposition in human neural progenitor cells // Nature. 2009. V. 460. P. 1127–1131.
- Baillie J.K., Barnett M.W., Upton K.R. et al. Somatic retrotransposition alters the genetic landscape of the human brain // Nature. 2011. V. 479. P. 534–537. https://doi.org/10.1038/nature10531
- Kurnosov A.A., Ustyugova S.V., Nazarov V.I. et al. The evidence for increased L1 activity in the site of human adult brain neurogenesis // PLoS One. 2015. V. 10. https://doi.org/10.1371/journal.pone.0117854
- Upton K., Gerhardt D.J., Jesuadian J.S. et al. Ubiquitous L1 mosaicism in hippocampal neurons // Cell. 2015. V. 161. P. 228–239.
- Mustafin R.N., Khusnutdinova E.K. The role of transposable elements in the ecological morphogenesis under influence of stress // Vavilov J. Genetics and Breeding. 2019. V. 23. P. 380–389.
- Ponomarev I., Rau V., Eger E.I.et al. Amygdala transcriptome and cellular mechanisms underlying stress-enhanced fear learning in a rat model of posttraumatic stress disorder // Neuropsychopharmacology. 2010. V. 35. P. 1402–1411.
- Hunter R.G., Murakami G., Dewell S. et al. Acute stress and hippocampal histone H3 lysine 9 trimethylation, a retrotransposon silencing response // Proc. Natl Acad. Sci. USA. 2012. V. 109. P. 17657–17662.
- Muotri A.R., Zhao C., Marchetto M.C., Gage F.H. Environmental influence on L1 retrotransposons in the adult hippocampus // Hippocampus. 2009. V. 19. P. 1002–1007. https://doi.org/10.1002/hipo.20564
- Maze I., Feng J., Wilkinson M.B. et al. Cocaine dynamically regulates heterochromatin and repetitive element unsilencing in nucleus accumbens // Proc. Natl Acad. Sci. USA. 2011. V. 108. P. 3035–3040. https://doi.org/10.1073/pnas.1015483108
- Moszczynska A., Flack A., Qiu P. et al. Neurotoxic methamphetamine doses increase LINE-1 expression in the neurogenic zones of the adult rat brain // Sci. Rep. 2015. V. 5. P. 14356. https://doi.org/10.1038/srep14356
- Ponomarev I., Wang S., Zhang L. et al. Gene coexpression 312 networks in human brain identify epigenetic modifications in alcohol dependence // J. Neurosci. 2012. V. 32. P. 1884–1897.
- Kaeser G., Chun J. Brain cell somatic gene recombination and its phylogenetic foundations // J. Biol. Chem. 2020. V. 295. P. 12786–12795. https://doi.org/10.1074/jbc.REV120.009192
- Sankowski R., Strohl J., Huerta T.S. et al. Endogenous retroviruses are associated with hippocampus-based memory impairment // Proc. Natl Acad. Sci. USA. 2019. V. 116. P. 25982–25990.
- Suberbielle E., Sanchez P.E., Kravitz A.V. et al. Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β // Nat. Neurosci. 2013. V. 16. P. 613–621. https://doi.org/10.1038/nn.3356
- Yenerall P., Zhou L. Identifying the mechanisms of intron gain: progress and trends // Biol. Direct. 2012. V. 7. P. 29.
- Bachiller S., del-Pozo-Martín Y., Carrion A.M. L1 retrotransposition alters the hippocampal genomic landscape enabling memory formation // Brain Behav. Immun. 2017. V. 64. P. 65–70.
- Zhang W.J., Huang Y.Q., Fu A. et al. The retrotransposition of L1 is involved in the reconsolidation of contextual fear memory in mice // CNS Neurol. Disord. Drug Targets. 2021. V. 20. P. 273–284. https://doi.org/10.2174/1871527319666200812225509
- Valles-Saiz L., Avila J., Hernandez F. Lamivudine (3TC), a nucleoside reverse transcriptase inhibitor, prevents the neuropathological alterations present in mutant tau transgenic mice // Int. J. Mol. Sci. 2023. V. 24. P. 11144. https://doi.org/10.3390/ijms241311144
- Sun W., Samimi H., Gamez M. et al. Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative taupathies // Nat. Neurosci. 2018. V. 21. P. 1038–1048.
- Ramirez P., Zuniga G., Sun W. et al. Pathogenic tau accelerates aging-associated activation of transposable elements in the mouse central nervous system // Prog. Neurobiol. 2022. V. 208. P. 102181. https://doi.org/10.1016/j.pneurobio.2021.102181
- Guo C., Jeong H.H., Hsieh Y.C. et al. Tau activates transposable elements in Alzheimerʹs disease // Cell Rep. 2018. V. 23. P. 2874–2880. https://doi.org/10.1016/j.celrep.2018.05.004
- Grundman J., Spencer B., Sarsoza F., Rissman R.A. Transcriptome analyses reveal tau isoform-driven changes in transposable element and gene expression // PLoS One. 2021. V. 16. https://doi.org/10.1371/journal.pone.0251611
- Perrat P.N., DasGupta S., Wang J. et al. Transposon-driven genomic heterogeneity in the Drosophila brain // Science. 2013. V. 340. P. 91–95.
- Lapp H.E., Hunter R.G. The dynamic genome: transposons and environmental adaptation in the nervous system // Epigenomics. 2016. V. 8. 237–249.
- Singer T., McConnell M.J., Marchetto M.C.N. et al. LINE-1 retrotransposons: Mediators of somatic variation in neuronal genomes // Trends Neurosci. 2010. V. 33. P. 345–354. https://doi.org/10.1016/j.tins.2010.04.001
- Linker S.B., Randolph-Moore L., Kottilil K. et al. Identification of bona fide B2 SINE retrotransposon transcription through single-nucleus RNA-seq of the mouse hippocampus // Genome Res. 2020. V. 30. P. 1643–1654. https://doi.org/10.1101/gr.262196.120
- Huang W., Li S., Hu Y.M. et al. Implication of the env gene of the human endogenous retrovirus W family in the expression of BDNF and DRD3 and development of recent-onset schizophrenia // Schizophr. Bull. 2011. V. 37. 988–1000.
- Leal G., Comprido D., Duarte C.B. BDNF-induced local protein synthesis and synaptic plasticity // Neuropharmacology. 2014. V. 76Pt. P. 639–656.
- Li W., Prazak L., Chatterjee N. et al. Activation of transposable elements during aging and neuronal decline in Drosophila // Nat. Neurosci. 2013. V. 16. P. 529–531. https://doi.org/10.1038/nn.3368
- Mustafin R.N., Khusnutdinova E. Perspecitve for studing the relationship of miRNAs with transposable elements // Curr. Iss. in Mol. Biology. 2023. V. 45. P. 3122–3145.
- Campillos M., Doerks T., Shah P.K., Bork P. Computational characterization of multiple Gag-like human proteins // Trends Genet. 2006. V. 22. P. 585–589.
- Zhang W., Chuang Y.A., Na Y. et al. Arc oligomerization is regulated by CaMKII phosphorylation of the GAG domain: An essential mechanism for plasticity and memory formation // Mol. Cell. 2019. V. 75. P. 13–25. https://doi.org/10.1016/j.molcel.2019.05.004.
- Kaneko-Ishino T., Ishino F. Evolution of brain functions in mammals and LTR retrotransposon-derived genes // Uirusu. 2016. V. 66. P. 11–20. https://doi.org/10.2222/jsv.66.11
- Irie M., Yoshikawa M., Ono R. et al. Cognitive function related to the Sirh11/Zcchc16 gene acquired from an LTR retrotransposon in Eutherians // PLoS Genet. 2015. V. 11. https://doi.org/10.1371/journal.pgen.1005521
- Pandya N.J., Wang C., Costa V. et al. Secreted retrovirus-like GAG-domain-containing protein PEG10 is regulated by UBE3A and is involved in Angelman syndrome pathophysiology // Cell. Rep. Med. 2021. V. 2. https://doi.org/10.1016/j.xcrm.2021.100360
- Volff J.N. Turning junk into gold: Domestication of transposable elements and the creation of new genes in eukaryotes // Bioessays. 2006. V. 28. P. 913–922.
- Alzohairy A.M., Gyulai G., Jansen R.K., Bahieldin A. Transposable elements domesticated and neofunctionalized by eukaryotic genomes // Plasmid. 2013. V. 69. P. 1–15.
- Steplewski A., Krynska B., Tretiakova A. et al. MyEF-3, a developmentally controlled brain-derived nuclear protein which specifically interacts with myelin basic protein proximal regulatory sequences // Biochem. Biophys. Res. Commun. 1998. V. 243. P. 295–301. https://doi.org/10.1006/bbrc.1997.7821
- Chou M.Y., Hu M.C., Chen P.Y. et al. RTL1/PEG11 imprinted in human and mouse brain mediates anxiety-like and social behaviors and regulates neuronal excitability in the locus coeruleus // Hum. Mol. Genet. 2022. V. 31. P. 3161–3180. https://doi.org/10.1093/hmg/ddac110
- Dlakic M., Mushegian A. Prp8, the pivotal protein of the spliseosomal catalytic center, evolved from a retroelement – encoded reverse transcriptase // RNA. 2011. V. 17. P. 799–808.
- Cobeta I.M., Stadler C.B., Li J. et al. Specification of Drosophila neuropeptidergic neurons by the splicing component brr2 // PLoS Genet. 2018. V. 14. https://doi.org/10.1371/journal.pgen.1007496
- Kopera H.C., Moldovan J.B., Morrish T.A. et al. Similarities between long interspersed element-1 (LINE-1) reverse transcriptase and telomerase // Proc. Natl Acad. Sci. USA. 2011. V. 108. P. 20345–20350.
- Zhou Q.G., Liu M.Y., Lee H.W. et al. Hippocampal TERT regulates spatial memory formation through modulation of neural development // Stem Cell Reports. 2017. V. 9. P. 543–556. https://doi.org/10.1016/j.stemcr.2017.06.014
- Honson D.D., Macfarlan T.S. A lncRNA-like role for LINE1s in development // Dev. Cell. 2018. V. 46. P. 132–134.
- Chen W., Qin C. General hallmarks of microRNAs in brain evolution and development // RNA Biol. 2015. V. 12. P. 701–708. https://doi.org/10.1080/15476286.2015.1048954
- Grinkevich L.N. The role of microRNAs in learning and long-term memory // Vavilov J. Genetic and Breeding. 2020. V. 24. P. 885–896. https://doi.org/10.18699/VJ20.687
- Zhang H., Yu G., Li J. et al. Overexpressing lnc240 rescues learning and memory dysfunction in hepatic encephalopathy through miR-1264-5p/MEF2C axis // Mol. Neurobiol. 2023. V. 60. P. 2277–2294. https://doi.org/10.1007/s12035-023-03205-1
- Xu X.F., Wang Y.C., Zong L., Wang X.L. miR-151-5p modulates APH1a expression to participate in contextual fear memory formation // RNA Biol. 2019. V. 16. P. 282-294. https://doi.org/10.1080/15476286.2019.1572435
- Ryan B., Logan B.J., Abraham W.C., Williams J.M. MicroRNAs, miR-23a-3p and miR-151-3p, are regulated in dentate gyrus neuropil following induction of long-term potentiation in vivo // PLoS One. 2017. V. 12. https://doi.org/10.1371/journal.pone.0170407
- Tang C.Z., Yang J.T., Liu Q.H. et al. Up-regulated miR-192-5p expression rescues cognitive impairment and restores neural function in mice with depression via the Fbln2-mediated TGF-β1 signaling pathway // FASEB J. 2019. V. 33. P. 606–618. https://doi.org/10.1096/fj.201800210RR
- Mainigi M., Rosenzweig J.M., Lei J. et al. Peri-implantation hormonal milieu: Elucidating mechanisms of adverse neurodevelopmental outcomes // Reprod. Sci. 2016. V. 23. P. 785–794. https://doi.org/10.1177/1933719115618280
- Li L., Miao M., Chen J. et al. Role of Ten eleven translocation-2 (Tet2) in modulating neuronal morphology and cognition in a mouse model of Alzheimerʹs disease // J. Neurochem. 2021. V. 157. P. 993–1012. https://doi.org/10.1111/jnc.15234
- Bersten D.C., Wright J.A., McCarthy P.J., Whitelaw M.L. Regulation of the neuronal transcription factor NPAS4 by REST and microRNAs // Biochim. Biophys. Acta. 2014. V. 1839. P. 13–24.
- Parsons M.J., Grimm C., Paya-Cano J.L. et al. Genetic variation in hippocampal microRNA expression differences in C57BL/6 J X DBA/2 J (BXD) recombinant inbred mouse strains // BMC Genomics. 2012. V. 13. https://doi.org/10.1186/1471-2164-13-476
- Shan L., Ma D., Zhang C. et al. miRNAs may regulate GABAergic transmission associated genes in aged rats with anesthetics-induced recognition and working memory dysfunction // Brain Res. 2017. V. 1670. P. 191–200. https://doi.org/10.1016/j.brainres.2017.06.027
- Xu L., Xu Q., Xu F. et al. MicroRNA-325-3p prevents sevoflurane-induced learning and memory impairment by inhibiting Nupr1 and C/EBPβ/IGFBP5 signaling in rats // Aging (Albany NY). 2020. V. 12. P. 5209–5220. https://doi.org/10.18632/aging.102942.
- Wibrand K., Pai B., Siripornmongcolchai T. et al. MicroRNA regulation of the synaptic plasticity-related gene Arc // PLoS One. 2012. V. 7. https://doi.org/10.1371/journal.pone.0041688
- Cohen J.E., Lee P.R., Fields R.D. Systematic identification of 3ʹ-UTR regulatory elements in activity-dependent mRNA stability in hippocampal neurons // Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2014. V. 369. P. 20130509.
- He B., Chen W., Zeng J. et al. MicroRNA-326 decreases tau phosphorylation and neuron apoptosis through inhibition of the JNK signaling pathway by targeting VAV1 in Alzheimerʹs disease // J. Cell. Physiol. 2020. V. 235. P. 480–493. https://doi.org/10.1002/jcp.28988
- Capitano F., Camon J., Licursi V. et al. MicroRNA-335-5p modulates spatial memory and hippocampal synaptic plasticity // Neurobiol. Learn. Mem. 2017. V. 139. P. 63–68.
- Gu Q.H., Yu D., Hu Z. et al. MiR-26a and miR-384-35p are required for LTP maintenance and spine enlargement // Nat. Commun. 2015. V. 6. P. 6789.
- Nair P.S., Raijas P., Ahvenainen M. et al. Misic-listening regulates human microRNA expression // Epigenetics. 2021. V. 16. P. 554–566.
- Eysert F., Coulon A., Boscher E. et al. Alzheimerʹs genetic risk factor FERMT2 (Kindlin-2) controls axonal growth and synaptic plasticity in an APP-dependent manner // Mol. Psychiatry. 2021. V. 26. P. 5592–5607. https://doi.org/10.1038/s41380-020-00926-w
- Stevanato L., Thanabalasundaram L., Vysokov N., Sinden J. D. Investigation of content, stoichiometry and transfer of miRNA from human neural stem cell line derived exosomes // PLoS One. 2016. V. 11. https://doi.org/10.1371/journal.pone.0146353
- Men Y., Yelick J., Jin S. et al. Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS // Nat. Commun. 2019. V. 10. P. 4136. https://doi.org/10.1038/s41467-019-11534-w
- Cui G.H., Guo H.D., Li H. et al. RVG-modified exosomes derived from mesenchymal stem cells rescue memory deficits by regulating inflammatory responses in a mouse model of Alzheimerʹs disease // Immun Ageing. 2019. V. 16. P. 10. https://doi.org/10.1186/s12979-019-0150-2
- Puig-Parnau I., Garcia-Brito S., Faghihi N. et al. Intracranial self-stimulation modulates levels of SIRT1 protein and neural plasticity-related microRNAs // Mol. Neurobiol. 2020. V. 57. P. 2551–2562. https://doi.org/10.1007/s12035-020-01901-w
- Zhao J., Zhang W., Wang S. et al. Sevoflurane-induced POCD-associated exosomes delivered miR-584-5p regulates the growth of human microglia HMC3 cells through targeting BDNF // Aging (Albany NY). 2022. V. 14. P. 9890–9907. https://doi.org/10.18632/aging.204398.
- Sfera A., Cummings M., Osorio C. Dehydration and cognition in geriatrics: А hydromolecular hypothesis // Front. Mol. Biosci. 2016. V. 3. P. 18.
- Lugli G., Cohen A.M., Bennett D.A. et al. Plasma exosomal miRNAs in persons with and without Alzheimer disease: Altered expression and prospects for biomarkers // PLoS One. 2015. V. 10. https://doi.org/10.1371/journal.pone.0139233.
- Sierksma A., Lu A., Salta E. et al. Deregulation of neuronal miRNAs induced by amyloid-β or TAU pathology // Mol. Neurodegener. 2018. V. 13. P. 54.
- Hulst H.E., Schoonheim M.M., Van Geest Q. et al. Memory impairment in multiple sclerosis: relevance of hippocampal activation and hippocampal connectivity // Mult. Scler. 2015. V. 21. P. 1705–1712. https://doi.org/10.1177/1352458514567727
- Bezdicek O., Ballarini T., Buschke H. et al. Memory impairment in Parkinsonʹs disease: The retrieval versus associative deficit hypothesis revisited and reconciled // Neuropsychology. 2019. V. 33. P. 391–405. https://doi.org/10.1037/neu0000503
- Henriques A.D., Machado-Silva W., Leite R.E.P. et al. Genome-wide profiling and predicted significance of post-mortem brain microRNA in Alzheimerʹs disease // Mech. Ageing Dev. 2020. V. 191. https://doi.org/10.1016/j.mad.2020.111352
- Guo R., Fan G., Zhang J. et al. A 9-microRNA signature in serum serves as a noninvasive biomarker in early diagnosis of Alzheimerʹs disease // J. Alzheimers Dis. 2017. V. 60. P. 1365–1377. https://doi.org/10.3233/JAD-170343
- Satoh J., Kino Y., Niida S. MicroRNA-Seq data analysis pipeline to identify blood biomarkers for Alzheimerʹs disease from public data // Biomark. Insight. 2015. V. 10. P. 21–31.
- Liu X.H., Ning F.B., Zhao D.P. et al. Role of miR-211 in a PC12 cell model of Alzheimerʹs disease via regulation of neurogenin 2 // Exp. Physiol. 2021. V. 106. P. 1061–1071. https://doi.org/10.1113/EP088953
- Hong H., Li Y., Su B. Identification of circulating miR-125b as a potential biomarker of Alzheimerʹs disease in APP/PS1 transgenic mouse // J. Alzheimers Dis. 2017. V. 59. P. 1449–1458.
- Zhao X., Wang S., Sun W. Expression of miR-28-3p in patients with Alzheimerʹs disease before and after treatment and its clinical value // Exp. Ther. Med. 2020. V. 20. P. 2218–2226.
- Boese A.S., Saba R., Campbell K. et al. MicroRNA abundance is altered in synaptoneurosomes during prion disease // Mol. Cell. Neurosci. 2016. V. 71. P. 13–24.
- Cai Y., Sun Z., Jia H. et al. Rpph1 upregulates CDC42 expression and promotes hippocampal neuron dendritic spine formation by competing with miR-330-5p // Front. Mol. Neurosci. 2017. V. 10. https://doi.org/10.3389/fnmol.2017.00027.
- Bottero V., Potashkin J.A. Meta-analysis of gene expression changes in the blood of patients with mild cognitive impairment and Alzheimerʹs disease dementia // Int. J. Mol. Sci. 2019. V. 20. https://doi.org/10.3390/ijms20215403
- Lu L., Dai W., Zhu X., Ma T. Analysis of serum miRNAs in Alzheimerʹs disease // Am. J. Alzheimers Dis. Other Demen. 2021. V. 36. https://doi.org/10.1177/15333175211021712.
- Dong Z., Gu H., Guo Q. et al. Profiling of serum exosome miRNA reveals the potential of a miRNA panel as diagnostic biomarker for Alzheimerʹs disease // Mol. Neurobiol. 2021. V. 58. P. 3084–3094.
- Samadian M., Gholipour M., Hajiesmaeili M. et al. The eminent role of microRNAs in the pathogenesis of Alzheimerʹs disease // Front. Aging Neurosci. 2021. V. 13. https://doi.org/10.3389/fnagi.2021.641080
- Cosin-Tomas M., Antonell A., Llado A. et al. Plasma miR-34a-5p and miR-545-3p as early biomarkers of Alzheimerʹs disease: potential and limitations // Mol. Neurobiol. 2017. V. 54. P. 5550–5562. https://doi.org/10.1007/s12035-016-0088-8
- Yaqub A., Mens M.M.J., Klap J.M. et al. Genome-wide profiling of circulatory microRNAs associated with cognition and dementia // Alzheimers Dement. 2023. V. 19. P. 1194–1203. https://doi.org/10.1002/alz.12752
- Zhang C., Lu J., Liu B. et al. Primate-specific miR-603 is implicated in the risk and pathogenesis of Alzheimerʹs disease // Aging. 2016. V. 8. P. 272–290. https://doi.org/10.18632/aging.100887
- Majumder P., Chanda K., Das D. et al. A nexus of miR-1271, PAX4 and ALK/RYK influences the cytoskeletal architectures in Alzheimerʹs Disease and Type 2 Diabetes // Biochem. J. 2021. V. 478. P. 32. https://doi.org/10.1042/BCJ20210175
- Qin Z., Han X., Ran J. et al. Exercise-mediated alteration of miR-192-5p is associated with cognitive improvement in Alzheimerʹs disease // Neuroimmunomodulation. 2022. V. 29. P. 36–43. https://doi.org/10.1159/000516928
- Dong H., Li J., Huang L. et al. Serum microRNA profiles serve as novel biomarkers for the diagnosis of Alzheimerʹs disease // Dis. Markers. 2015. V. 2015. P. 625659.
- Barros-Viegas A.T., Carmona V., Ferreiro E. et al. MiRNA-31 improves cognition and abolishes amyloid-β pathology by targeting APP and BACE1 in an animal model of Alzheimerʹs disease // Mol. Ther. Nucleic Acids. 2020. V. 19. P. 1219-1236. https://doi.org/10.1016/j.omtn.2020.01.010
- Sun C., Liu J., Duan F. et al. The role of the microRNA regulatory network in Alzheimerʹs disease: a bioinformatics analysis // Arch. Med. Sci. 2021. V. 18. P. 206–222.
- Barak B., Shvarts-Serebro I., Modai S. et al. Opposing actions of environmental enrichment and Alzheimerʹs disease on the expression of hippocampal microRNAs in mouse models // Transl. Psychiatry. 2013. V. 3. e304. https://doi.org/10.1038/tp.2013.77
- Tan X., Luo Y., Pi D. et al. MiR-340 reduces the accumulation of amyloid-β through targeting BACE1 (β-site amyloid precursor protein cleaving enzyme 1) in Alzheimerʹs disease // Curr. Neurovasc. Res. 2020. V. 17. P. 86–92. https://doi.org/10.2174/1567202617666200117103931
- Dakterzada F., Benitez I.D., Targa A. et al. Reduced levels of miR-342-5p in plasma are associated with worse cognitive evolution in patients with mild Alzheimerʹs disease // Front. Aging Neurosci. 2021. V. 13. https://doi.org/10.3389/fnagi.2021.705989
- Hajjri S. N., Sadigh-Eteghad S., Mehrpour M. et al. Beta-amyloid-dependent mirnas as circulating biomarkers in Alzheimerʹs disease: a preliminary report // J. Mol. Neurosci. 2020. V. 70. P. 871–877. https://doi.org/10.1007/s12031-020-01511-0
- Hu L., Zhang R., Yuan Q. et al. The emerging role of microRNA-4487/6845-3p in Alzheimerʹs disease pathologies is induced by Aβ25-35 triggered in SH-SY5Y cell // BMC Syst. Biol. 2018. V. 12 (Suppl. 7). P. 119. https://doi.org/10.1186/s12918-018-0633-3
- Wang T., Zhao W., Liu Y. et al. MicroRNA-511-3p regulates Aβ1-40 induced decreased cell viability and serves as a candidate biomarker in Alzheimerʹs disease // Exp. Gerontol. 2023. V. 178. https://doi.org/10.1016/j.exger.2023.112195.
- Liu Q.Y., Chang M.N.V., Lei J.X. et al. Identification of microRNAs involved in Alzheimerʹs progression using a rabbit model of the disease // Am. J. Neurodegener Dis. 2014. V. 3. P. 33–44.
- Xu X., Gu D., Xu B. et al. Circular RNA circ_0005835 promotes neural stem cells proliferation and differentiate to neuron and inhibits inflammatory cytokines levels through miR-576-ep in Alzheimerʹs disease // Environ. Sci. Pollut. Res. Int. 2022. V. 29. P. 35934–35943.
- Lau P., Bossers K., Janky R. et al. Alteration of the microRNA network during the progression of Alzheimerʹs disease // EMBO Mol. Med. 2013. V. 5. P. 1613–1634.
- Baek S.J., Ban H.J., Park S.M. et al. Circulating microRNAs as potential diagnostic biomarkers for poor sleep quality // Nat. Sci. Sleep. 2021. V. 13. P. 1001–1012. https://doi.org/10.2147/NSS.S311541
- Schonrock N., Ke Y.D., Humphreys D. et al. Neuronal microRNA deregulation in response to Alzheimerʹs disease amyloid-β // PLoS One. 2010. V. 5. https://doi.org/10.1371/journal.pone.0011070
- Rahman M.R., Islam T., Zaman T. et al. Identification of molecular signatures and pathways to identify novel therapeutic targets in Alzheimerʹs disease: Insights from a systems biomedicine perspective // Genomics. 2020. V. 112. P. 1290–1299.
- Di Palo A.D., Siniscalchi C., Crescente G. et al. Effect of cannabidiolic acid, N-trans-caffeoyltyramine and cannabisin B from hemp seeds on microRNA expression in human neural cells // Curr. Issues Mol. Biol. 2022. V. 44. P. 5106–5116.
- Tan L., Yu J.T., Tan M.S. et al. Genome-wide serum microRNA expression profiling identifies serum biomarkers for Alzheimerʹs disease // J. Alzheimers Dis. 2014. V. 40. P. 1017–1027. https://doi.org/10.3233/JAD-132144
- Zhang Y., Xia Q., Lin J. LncRNA H19 attenuates apoptosis in MPTP-induced Parkinsonʹs disease through regulating miR-585-3p/PIK3R3 // Neurochem. Res. 2020. V. 45. P. 1700–1710. https://doi.org/10.1007/s11064-020-03035-w
- Soreq L., Salomonis N., Bronstein M. et al. Small RNA sequencing-microarray analyses in Parkinson leukocytes reveal deep brain stimulation induced splicing changes that classify brain region transcriptomes // Front. Mol. Neurosci. 2013. V. 6. P. 10 https://doi.org/10.3389/fnmol.2013.00010
- Marsh A. G., Cottrell M. T., Goldman M. F. Epigenetic DNA methylation profiling with MSRE: A quantitative NGS approach using a Parkinsonʹs disease test case // Front. Genet. 2016. V. 7. https://doi.org/10.3389/fgene.2016.00191
- Honorato-Mauer J., Xavier G., Ota V.K. et al. Alterations in microRNA of extracellular vesicles associated with major depression, attention-deficit/hyperactivity and anxiety disorders in adolescents // Transl. Psychiatry. 2023. V. 13. P. 47.
- Goen K., Matby V.E., Lea R.A. et al. Erythrocyte microRNA sequencing reveals differential expression in relapsing-remitting multiple sclerosis // BMC Med. Genomics. 2018. V. 11. P. 48. https://doi.org/10.1186/s12920-018-0365-7
- Liguori M., Nuzziello N., Licciulli F. et al. Combined microRNA and mRNA expression analysis in pediatric multiple sclerosis: An integrated approach to uncover novel pathogenic mechanisms of the disease // Hum. Mol. Genet. 2018. V. 27. P. 66–79. https://doi.org/10.1093/hmg/ddx385
Дополнительные файлы
