Роль мобильных генетических элементов в формировании долговременной памяти

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В ряде экспериментальных исследований оспорено значение синаптической пластичности и доказана роль транспозонов в консолидации памяти. Это обусловлено cis-регуляторным влиянием активированных мобильных генетических элементов на экспрессию генов, а также инсерциями в новые локусы генома вблизи участвующих в функционировании головного мозга генов. Транскрипты и белки эндогенных ретровирусов транспортируются в области синапсов дендритов и передают информацию для изменения экспрессии генов в соседние клетки за счет формирования вирусоподобных частиц в составе везикул. Благодаря этому обеспечивается взаимосвязь синаптической пластичности с ядерным кодированием, поскольку мобильные генетические элементы являются также драйверами эпигенетической регуляции за счет взаимосвязи с произошедшими от них некодирующими РНК. Проведенный нами анализ научной литературы позволил выявить роль 17 возникших от транспозонов микроРНК в нормальном формировании памяти. При нейродегенеративных заболеваниях с нарушением памяти нами выявлено изменение экспрессии 44 произошедших от мобильных генетических элементов микроРНК. Это свидетельствует о возможностях таргетного воздействия на патологическую активацию транспозонов при нейродегенеративных болезнях для восстановления памяти с использованием микроРНК в качестве инструментов.

Полный текст

Доступ закрыт

Об авторах

Р. Н. Мустафин

Башкирский государственный медицинский университет

Автор, ответственный за переписку.
Email: ruji79@mail.ru
Россия, Уфа, 450008

Э. К. Хуснутдинова

Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наук

Email: ruji79@mail.ru
Россия, Уфа, 450054

Список литературы

  1. Ryan T.J., Roy D.S., Pignatelli M. et al. Engram cells retain memory under retrograde amnesia // Science. 2015. V. 348. P. 1007-1013. https://doi.org/10.1126/science.aaa5542
  2. Takeuchi T., Duszkiewicz A.J., Morris R.G. The synaptic plasticity and memory hypothesis: encoding, storage and persistence // Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013. V. 369 (1633). https://doi.org/10.1098/rstb.2013.0288
  3. Fila M., Diaz L., Szczepanska J. et al. mRNA Trafficking in the nervous system: A key mechanism of the involvement of activity-regulated cytoskeleton-associated protein (Arc) in synaptic plasticity // Neural Plast. 2021. V. 2021. https://doi.org/10.1155/2021/3468795
  4. Maag J.L.V., Panja D., Sporild I. et al. Dynamic expression of long noncoding RNAs and repeat elements in synaptic plasticity // Front. Neurosci. 2015. V. 9. P. 351. https://doi.org/10.3389/fnins.2015.00351
  5. Hegde A.N., Smith S.G. Recent developments in transcriptional and translational regulation underlying long-term synaptic plasticity and memory // Learn. Mem. 2019. V. 26. P. 307-317. https://doi.org/10.1101/lm.048769.118
  6. Buurstede J.C., van Weert L.T.C.M., Coucci P. et al. Hippocalmpal glucocorticoid target genes associated with enhancement of memory consolidation // Eur. J. Neurosci. 2022. V. 55. P. 2666–2683. https://doi.org/doi: 10.1111/ejn.15226
  7. Tan Y., Yu D., Busto G.U. et al. Wnt signaling is required for long-term memory formation // Cell Rep. 2013. V. 4. № 6. P. 1082–1089. https://doi.org/10.1016/j.celrep.2013.08.007
  8. Lukel C., Schumann D., Kalisch R. et al. Dopamine related genes differentially affect declarative long-term memory in healthy humans // Front. Behav. Neurosci. 2020. V. 14. https://doi.org/10.3389/fnbeh.2020.539725
  9. Kaltschmidt B., Kaltschmidt C. NF-KappaB in long-term memory and structual plasticity in the adult mammalian brain // Front. Mol. Neurosci. 2015. V. 8. https://doi.org/10.3389/fnmol.2015.00069
  10. Noyes N.C., Phan A., Davis R.L. Memory suppressor genes: modulating acquisition, consolidation, and forgetting // Neuron. 2021. V. 109. P. 3211–3227. https://doi.org/10.1016/j.neuron.2021.08.001
  11. Leach P.T., Poplawski S.G., Kenney J.W. et al. Gadd45b knockout mice exhibit selective deficits in hippocampus-dependent long-term memory // Learn. Mem. 2012. V. 19. P. 319–324. https://doi.org/10.1101/lm.024984.111
  12. Gontier G., Iyer M., Shea J.M. et al. Tet2 rescues age-related regenerative decline and enhances cognitive function in the adult mouse brain // Cell. Rep. 2018. V. 22. P. 1974–1981. https://doi.org/10.1016/j.celrep.2018.02.001
  13. Chalertpet K., Pin-On P., Aporntewan C. et al. Argonaute 4 as an effector protein in RNA-directed DNA methylation in human cells // Front. Genet. 2019. V.https://doi.org/10.3389/fgene.2019.00645
  14. Shomrat T., Levin M. An automated training paradigm reveals long-term memory in planarians and its persistence through head regeneration // J. Exp. Biol. 2013. V. 216. P. 3799–3810.
  15. Chen S., CaiD., Pearce K. et al. Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia // eLife. 2014. V. 3. https://doi.org/10.7554/eLife.03896
  16. Levine R.B. Changes in neuronal circuits during insect metamorphosis // J. Exp. Biol. 1984. V. 112. P. 27–44. https://doi.org/10.1242/jeb.112.1.27
  17. Halder R., Hennion H., Vidal R.O. et al. DNA methylation changes in plasticity genes accompany the formation and maintenance of memory // Nat. Neurosci. 2016. V. 19. P. 102–110. https://doi.org/10.1038/nn.4194
  18. Miller C.A., Gavin C.F., White J.A. et al. Cortical DNA methylation maintains remote memory // Nat. Neurosci. 2010. V. 13. P. 664–666.
  19. Jarome T.J., Lubin F.D. Epigenetic mechanisms of memory formation and reconsolidation // Neurobiol. Lerarn. Mem. 2014. V. 115. P. 116–127. https://doi.org/10.1016/j.nlm.2014.08.002.
  20. Mustafin R.N., Khusnutdinova E.K. The role of transposons in epigenetic regulation of ontogenesis // Russ. J. Developmental Biology. 2018. V. 49.
  21. Ashley J., Cody B., Lucia D. et al. Retrovirus-like Gag protein Arc1 binds RNA and traffics across synaptic boutons // Cell. 2018. V. 172. P. 262–274.
  22. Pastuzyn E.D., Day C.E., Kearns R.B. et al. The neuronal gene Arc encodes a repurposed retrotransposon Gag protein that mediates intercellular RNA transfer // Cell. 2018. V. 172. P. 275–288.
  23. Akhlaghpour H. An RNA-based theory of natural universal computation // J. Theor. Biol. 2022. V. 537. https://doi.org/10.1016/j.jtbi.2021.110984
  24. Kour S., Rath P.C. Long noncoding RNAs in aging and age-related diseases // Ageing Res. Rev. 2016. V. 26. P. 1–21. https://doi.org/10.1016/j.arr.2015.12.001
  25. Lu X., Sachs F., Ramsay L. et al. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity // Nat. Struct. Mol. Biol. 2014. V. 21. P. 423–425. https://doi.org/10.1038/nsmb.2799
  26. Johnson R., Guigo R. The RIDL hypothesis: Transposable elements as functional domains of long noncoding RNAs // RNA. 2014. V. 20. P. 959–976.
  27. Wei G., Qin S., Li W. et al. MDTE DB: A database for microRNAs derived from Transposable element // IEEE/ACM Trans. Comput. Biol. Bioinform. 2016. V. 13. P. 1155–1160.
  28. De Koning A.P., Gu W., Castoe T.A. et al. Repetitive elements may comprise over two-thirds of the human genome // PLoS Genetics. 2011. V. 7. e1002384.
  29. Feschotte C. Transposable elements and the evolution of regulatory networks // Nat. Rev. Genet. 2008. V. 9. P. 397–405. https://doi.org/10.1038/nrg2337
  30. Mustafin R.N. The Relationship between transposons and transcription factors in the evolution of eukaryotes // J. Evol. Biochem. Physiol. 2019. V. 55. P. 14–22.
  31. Zhang H., Li J., Ren J. et al. Single-nucleus transcriptomic landscape of primate hippocampal aging // Protein Cell. 2021. V. 12. P. 695–716. https://doi.org/10.1007/s13238-021-00852-9
  32. Muotri A.R., Marchetto M.C., Coufal N.G. et al. L1 retrotransposition in neurons is modulated by MeCP2 // Nature. 2010. V. 468. P. 443–446.
  33. Coufal N.G., Garcia-Perez J.L., Peng G.E. et al. L1 retrotransposition in human neural progenitor cells // Nature. 2009. V. 460. P. 1127–1131.
  34. Baillie J.K., Barnett M.W., Upton K.R. et al. Somatic retrotransposition alters the genetic landscape of the human brain // Nature. 2011. V. 479. P. 534–537. https://doi.org/10.1038/nature10531
  35. Kurnosov A.A., Ustyugova S.V., Nazarov V.I. et al. The evidence for increased L1 activity in the site of human adult brain neurogenesis // PLoS One. 2015. V. 10. https://doi.org/10.1371/journal.pone.0117854
  36. Upton K., Gerhardt D.J., Jesuadian J.S. et al. Ubiquitous L1 mosaicism in hippocampal neurons // Cell. 2015. V. 161. P. 228–239.
  37. Mustafin R.N., Khusnutdinova E.K. The role of transposable elements in the ecological morphogenesis under influence of stress // Vavilov J. Genetics and Breeding. 2019. V. 23. P. 380–389.
  38. Ponomarev I., Rau V., Eger E.I.et al. Amygdala transcriptome and cellular mechanisms underlying stress-enhanced fear learning in a rat model of posttraumatic stress disorder // Neuropsychopharmacology. 2010. V. 35. P. 1402–1411.
  39. Hunter R.G., Murakami G., Dewell S. et al. Acute stress and hippocampal histone H3 lysine 9 trimethylation, a retrotransposon silencing response // Proc. Natl Acad. Sci. USA. 2012. V. 109. P. 17657–17662.
  40. Muotri A.R., Zhao C., Marchetto M.C., Gage F.H. Environmental influence on L1 retrotransposons in the adult hippocampus // Hippocampus. 2009. V. 19. P. 1002–1007. https://doi.org/10.1002/hipo.20564
  41. Maze I., Feng J., Wilkinson M.B. et al. Cocaine dynamically regulates heterochromatin and repetitive element unsilencing in nucleus accumbens // Proc. Natl Acad. Sci. USA. 2011. V. 108. P. 3035–3040. https://doi.org/10.1073/pnas.1015483108
  42. Moszczynska A., Flack A., Qiu P. et al. Neurotoxic methamphetamine doses increase LINE-1 expression in the neurogenic zones of the adult rat brain // Sci. Rep. 2015. V. 5. P. 14356. https://doi.org/10.1038/srep14356
  43. Ponomarev I., Wang S., Zhang L. et al. Gene coexpression 312 networks in human brain identify epigenetic modifications in alcohol dependence // J. Neurosci. 2012. V. 32. P. 1884–1897.
  44. Kaeser G., Chun J. Brain cell somatic gene recombination and its phylogenetic foundations // J. Biol. Chem. 2020. V. 295. P. 12786–12795. https://doi.org/10.1074/jbc.REV120.009192
  45. Sankowski R., Strohl J., Huerta T.S. et al. Endogenous retroviruses are associated with hippocampus-based memory impairment // Proc. Natl Acad. Sci. USA. 2019. V. 116. P. 25982–25990.
  46. Suberbielle E., Sanchez P.E., Kravitz A.V. et al. Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β // Nat. Neurosci. 2013. V. 16. P. 613–621. https://doi.org/10.1038/nn.3356
  47. Yenerall P., Zhou L. Identifying the mechanisms of intron gain: progress and trends // Biol. Direct. 2012. V. 7. P. 29.
  48. Bachiller S., del-Pozo-Martín Y., Carrion A.M. L1 retrotransposition alters the hippocampal genomic landscape enabling memory formation // Brain Behav. Immun. 2017. V. 64. P. 65–70.
  49. Zhang W.J., Huang Y.Q., Fu A. et al. The retrotransposition of L1 is involved in the reconsolidation of contextual fear memory in mice // CNS Neurol. Disord. Drug Targets. 2021. V. 20. P. 273–284. https://doi.org/10.2174/1871527319666200812225509
  50. Valles-Saiz L., Avila J., Hernandez F. Lamivudine (3TC), a nucleoside reverse transcriptase inhibitor, prevents the neuropathological alterations present in mutant tau transgenic mice // Int. J. Mol. Sci. 2023. V. 24. P. 11144. https://doi.org/10.3390/ijms241311144
  51. Sun W., Samimi H., Gamez M. et al. Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative taupathies // Nat. Neurosci. 2018. V. 21. P. 1038–1048.
  52. Ramirez P., Zuniga G., Sun W. et al. Pathogenic tau accelerates aging-associated activation of transposable elements in the mouse central nervous system // Prog. Neurobiol. 2022. V. 208. P. 102181. https://doi.org/10.1016/j.pneurobio.2021.102181
  53. Guo C., Jeong H.H., Hsieh Y.C. et al. Tau activates transposable elements in Alzheimerʹs disease // Cell Rep. 2018. V. 23. P. 2874–2880. https://doi.org/10.1016/j.celrep.2018.05.004
  54. Grundman J., Spencer B., Sarsoza F., Rissman R.A. Transcriptome analyses reveal tau isoform-driven changes in transposable element and gene expression // PLoS One. 2021. V. 16. https://doi.org/10.1371/journal.pone.0251611
  55. Perrat P.N., DasGupta S., Wang J. et al. Transposon-driven genomic heterogeneity in the Drosophila brain // Science. 2013. V. 340. P. 91–95.
  56. Lapp H.E., Hunter R.G. The dynamic genome: transposons and environmental adaptation in the nervous system // Epigenomics. 2016. V. 8. 237–249.
  57. Singer T., McConnell M.J., Marchetto M.C.N. et al. LINE-1 retrotransposons: Mediators of somatic variation in neuronal genomes // Trends Neurosci. 2010. V. 33. P. 345–354. https://doi.org/10.1016/j.tins.2010.04.001
  58. Linker S.B., Randolph-Moore L., Kottilil K. et al. Identification of bona fide B2 SINE retrotransposon transcription through single-nucleus RNA-seq of the mouse hippocampus // Genome Res. 2020. V. 30. P. 1643–1654. https://doi.org/10.1101/gr.262196.120
  59. Huang W., Li S., Hu Y.M. et al. Implication of the env gene of the human endogenous retrovirus W family in the expression of BDNF and DRD3 and development of recent-onset schizophrenia // Schizophr. Bull. 2011. V. 37. 988–1000.
  60. Leal G., Comprido D., Duarte C.B. BDNF-induced local protein synthesis and synaptic plasticity // Neuropharmacology. 2014. V. 76Pt. P. 639–656.
  61. Li W., Prazak L., Chatterjee N. et al. Activation of transposable elements during aging and neuronal decline in Drosophila // Nat. Neurosci. 2013. V. 16. P. 529–531. https://doi.org/10.1038/nn.3368
  62. Mustafin R.N., Khusnutdinova E. Perspecitve for studing the relationship of miRNAs with transposable elements // Curr. Iss. in Mol. Biology. 2023. V. 45. P. 3122–3145.
  63. Campillos M., Doerks T., Shah P.K., Bork P. Computational characterization of multiple Gag-like human proteins // Trends Genet. 2006. V. 22. P. 585–589.
  64. Zhang W., Chuang Y.A., Na Y. et al. Arc oligomerization is regulated by CaMKII phosphorylation of the GAG domain: An essential mechanism for plasticity and memory formation // Mol. Cell. 2019. V. 75. P. 13–25. https://doi.org/10.1016/j.molcel.2019.05.004.
  65. Kaneko-Ishino T., Ishino F. Evolution of brain functions in mammals and LTR retrotransposon-derived genes // Uirusu. 2016. V. 66. P. 11–20. https://doi.org/10.2222/jsv.66.11
  66. Irie M., Yoshikawa M., Ono R. et al. Cognitive function related to the Sirh11/Zcchc16 gene acquired from an LTR retrotransposon in Eutherians // PLoS Genet. 2015. V. 11. https://doi.org/10.1371/journal.pgen.1005521
  67. Pandya N.J., Wang C., Costa V. et al. Secreted retrovirus-like GAG-domain-containing protein PEG10 is regulated by UBE3A and is involved in Angelman syndrome pathophysiology // Cell. Rep. Med. 2021. V. 2. https://doi.org/10.1016/j.xcrm.2021.100360
  68. Volff J.N. Turning junk into gold: Domestication of transposable elements and the creation of new genes in eukaryotes // Bioessays. 2006. V. 28. P. 913–922.
  69. Alzohairy A.M., Gyulai G., Jansen R.K., Bahieldin A. Transposable elements domesticated and neofunctionalized by eukaryotic genomes // Plasmid. 2013. V. 69. P. 1–15.
  70. Steplewski A., Krynska B., Tretiakova A. et al. MyEF-3, a developmentally controlled brain-derived nuclear protein which specifically interacts with myelin basic protein proximal regulatory sequences // Biochem. Biophys. Res. Commun. 1998. V. 243. P. 295–301. https://doi.org/10.1006/bbrc.1997.7821
  71. Chou M.Y., Hu M.C., Chen P.Y. et al. RTL1/PEG11 imprinted in human and mouse brain mediates anxiety-like and social behaviors and regulates neuronal excitability in the locus coeruleus // Hum. Mol. Genet. 2022. V. 31. P. 3161–3180. https://doi.org/10.1093/hmg/ddac110
  72. Dlakic M., Mushegian A. Prp8, the pivotal protein of the spliseosomal catalytic center, evolved from a retroelement – encoded reverse transcriptase // RNA. 2011. V. 17. P. 799–808.
  73. Cobeta I.M., Stadler C.B., Li J. et al. Specification of Drosophila neuropeptidergic neurons by the splicing component brr2 // PLoS Genet. 2018. V. 14. https://doi.org/10.1371/journal.pgen.1007496
  74. Kopera H.C., Moldovan J.B., Morrish T.A. et al. Similarities between long interspersed element-1 (LINE-1) reverse transcriptase and telomerase // Proc. Natl Acad. Sci. USA. 2011. V. 108. P. 20345–20350.
  75. Zhou Q.G., Liu M.Y., Lee H.W. et al. Hippocampal TERT regulates spatial memory formation through modulation of neural development // Stem Cell Reports. 2017. V. 9. P. 543–556. https://doi.org/10.1016/j.stemcr.2017.06.014
  76. Honson D.D., Macfarlan T.S. A lncRNA-like role for LINE1s in development // Dev. Cell. 2018. V. 46. P. 132–134.
  77. Chen W., Qin C. General hallmarks of microRNAs in brain evolution and development // RNA Biol. 2015. V. 12. P. 701–708. https://doi.org/10.1080/15476286.2015.1048954
  78. Grinkevich L.N. The role of microRNAs in learning and long-term memory // Vavilov J. Genetic and Breeding. 2020. V. 24. P. 885–896. https://doi.org/10.18699/VJ20.687
  79. Zhang H., Yu G., Li J. et al. Overexpressing lnc240 rescues learning and memory dysfunction in hepatic encephalopathy through miR-1264-5p/MEF2C axis // Mol. Neurobiol. 2023. V. 60. P. 2277–2294. https://doi.org/10.1007/s12035-023-03205-1
  80. Xu X.F., Wang Y.C., Zong L., Wang X.L. miR-151-5p modulates APH1a expression to participate in contextual fear memory formation // RNA Biol. 2019. V. 16. P. 282-294. https://doi.org/10.1080/15476286.2019.1572435
  81. Ryan B., Logan B.J., Abraham W.C., Williams J.M. MicroRNAs, miR-23a-3p and miR-151-3p, are regulated in dentate gyrus neuropil following induction of long-term potentiation in vivo // PLoS One. 2017. V. 12. https://doi.org/10.1371/journal.pone.0170407
  82. Tang C.Z., Yang J.T., Liu Q.H. et al. Up-regulated miR-192-5p expression rescues cognitive impairment and restores neural function in mice with depression via the Fbln2-mediated TGF-β1 signaling pathway // FASEB J. 2019. V. 33. P. 606–618. https://doi.org/10.1096/fj.201800210RR
  83. Mainigi M., Rosenzweig J.M., Lei J. et al. Peri-implantation hormonal milieu: Elucidating mechanisms of adverse neurodevelopmental outcomes // Reprod. Sci. 2016. V. 23. P. 785–794. https://doi.org/10.1177/1933719115618280
  84. Li L., Miao M., Chen J. et al. Role of Ten eleven translocation-2 (Tet2) in modulating neuronal morphology and cognition in a mouse model of Alzheimerʹs disease // J. Neurochem. 2021. V. 157. P. 993–1012. https://doi.org/10.1111/jnc.15234
  85. Bersten D.C., Wright J.A., McCarthy P.J., Whitelaw M.L. Regulation of the neuronal transcription factor NPAS4 by REST and microRNAs // Biochim. Biophys. Acta. 2014. V. 1839. P. 13–24.
  86. Parsons M.J., Grimm C., Paya-Cano J.L. et al. Genetic variation in hippocampal microRNA expression differences in C57BL/6 J X DBA/2 J (BXD) recombinant inbred mouse strains // BMC Genomics. 2012. V. 13. https://doi.org/10.1186/1471-2164-13-476
  87. Shan L., Ma D., Zhang C. et al. miRNAs may regulate GABAergic transmission associated genes in aged rats with anesthetics-induced recognition and working memory dysfunction // Brain Res. 2017. V. 1670. P. 191–200. https://doi.org/10.1016/j.brainres.2017.06.027
  88. Xu L., Xu Q., Xu F. et al. MicroRNA-325-3p prevents sevoflurane-induced learning and memory impairment by inhibiting Nupr1 and C/EBPβ/IGFBP5 signaling in rats // Aging (Albany NY). 2020. V. 12. P. 5209–5220. https://doi.org/10.18632/aging.102942.
  89. Wibrand K., Pai B., Siripornmongcolchai T. et al. MicroRNA regulation of the synaptic plasticity-related gene Arc // PLoS One. 2012. V. 7. https://doi.org/10.1371/journal.pone.0041688
  90. Cohen J.E., Lee P.R., Fields R.D. Systematic identification of 3ʹ-UTR regulatory elements in activity-dependent mRNA stability in hippocampal neurons // Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2014. V. 369. P. 20130509.
  91. He B., Chen W., Zeng J. et al. MicroRNA-326 decreases tau phosphorylation and neuron apoptosis through inhibition of the JNK signaling pathway by targeting VAV1 in Alzheimerʹs disease // J. Cell. Physiol. 2020. V. 235. P. 480–493. https://doi.org/10.1002/jcp.28988
  92. Capitano F., Camon J., Licursi V. et al. MicroRNA-335-5p modulates spatial memory and hippocampal synaptic plasticity // Neurobiol. Learn. Mem. 2017. V. 139. P. 63–68.
  93. Gu Q.H., Yu D., Hu Z. et al. MiR-26a and miR-384-35p are required for LTP maintenance and spine enlargement // Nat. Commun. 2015. V. 6. P. 6789.
  94. Nair P.S., Raijas P., Ahvenainen M. et al. Misic-listening regulates human microRNA expression // Epigenetics. 2021. V. 16. P. 554–566.
  95. Eysert F., Coulon A., Boscher E. et al. Alzheimerʹs genetic risk factor FERMT2 (Kindlin-2) controls axonal growth and synaptic plasticity in an APP-dependent manner // Mol. Psychiatry. 2021. V. 26. P. 5592–5607. https://doi.org/10.1038/s41380-020-00926-w
  96. Stevanato L., Thanabalasundaram L., Vysokov N., Sinden J. D. Investigation of content, stoichiometry and transfer of miRNA from human neural stem cell line derived exosomes // PLoS One. 2016. V. 11. https://doi.org/10.1371/journal.pone.0146353
  97. Men Y., Yelick J., Jin S. et al. Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS // Nat. Commun. 2019. V. 10. P. 4136. https://doi.org/10.1038/s41467-019-11534-w
  98. Cui G.H., Guo H.D., Li H. et al. RVG-modified exosomes derived from mesenchymal stem cells rescue memory deficits by regulating inflammatory responses in a mouse model of Alzheimerʹs disease // Immun Ageing. 2019. V. 16. P. 10. https://doi.org/10.1186/s12979-019-0150-2
  99. Puig-Parnau I., Garcia-Brito S., Faghihi N. et al. Intracranial self-stimulation modulates levels of SIRT1 protein and neural plasticity-related microRNAs // Mol. Neurobiol. 2020. V. 57. P. 2551–2562. https://doi.org/10.1007/s12035-020-01901-w
  100. Zhao J., Zhang W., Wang S. et al. Sevoflurane-induced POCD-associated exosomes delivered miR-584-5p regulates the growth of human microglia HMC3 cells through targeting BDNF // Aging (Albany NY). 2022. V. 14. P. 9890–9907. https://doi.org/10.18632/aging.204398.
  101. Sfera A., Cummings M., Osorio C. Dehydration and cognition in geriatrics: А hydromolecular hypothesis // Front. Mol. Biosci. 2016. V. 3. P. 18.
  102. Lugli G., Cohen A.M., Bennett D.A. et al. Plasma exosomal miRNAs in persons with and without Alzheimer disease: Altered expression and prospects for biomarkers // PLoS One. 2015. V. 10. https://doi.org/10.1371/journal.pone.0139233.
  103. Sierksma A., Lu A., Salta E. et al. Deregulation of neuronal miRNAs induced by amyloid-β or TAU pathology // Mol. Neurodegener. 2018. V. 13. P. 54.
  104. Hulst H.E., Schoonheim M.M., Van Geest Q. et al. Memory impairment in multiple sclerosis: relevance of hippocampal activation and hippocampal connectivity // Mult. Scler. 2015. V. 21. P. 1705–1712. https://doi.org/10.1177/1352458514567727
  105. Bezdicek O., Ballarini T., Buschke H. et al. Memory impairment in Parkinsonʹs disease: The retrieval versus associative deficit hypothesis revisited and reconciled // Neuropsychology. 2019. V. 33. P. 391–405. https://doi.org/10.1037/neu0000503
  106. Henriques A.D., Machado-Silva W., Leite R.E.P. et al. Genome-wide profiling and predicted significance of post-mortem brain microRNA in Alzheimerʹs disease // Mech. Ageing Dev. 2020. V. 191. https://doi.org/10.1016/j.mad.2020.111352
  107. Guo R., Fan G., Zhang J. et al. A 9-microRNA signature in serum serves as a noninvasive biomarker in early diagnosis of Alzheimerʹs disease // J. Alzheimers Dis. 2017. V. 60. P. 1365–1377. https://doi.org/10.3233/JAD-170343
  108. Satoh J., Kino Y., Niida S. MicroRNA-Seq data analysis pipeline to identify blood biomarkers for Alzheimerʹs disease from public data // Biomark. Insight. 2015. V. 10. P. 21–31.
  109. Liu X.H., Ning F.B., Zhao D.P. et al. Role of miR-211 in a PC12 cell model of Alzheimerʹs disease via regulation of neurogenin 2 // Exp. Physiol. 2021. V. 106. P. 1061–1071. https://doi.org/10.1113/EP088953
  110. Hong H., Li Y., Su B. Identification of circulating miR-125b as a potential biomarker of Alzheimerʹs disease in APP/PS1 transgenic mouse // J. Alzheimers Dis. 2017. V. 59. P. 1449–1458.
  111. Zhao X., Wang S., Sun W. Expression of miR-28-3p in patients with Alzheimerʹs disease before and after treatment and its clinical value // Exp. Ther. Med. 2020. V. 20. P. 2218–2226.
  112. Boese A.S., Saba R., Campbell K. et al. MicroRNA abundance is altered in synaptoneurosomes during prion disease // Mol. Cell. Neurosci. 2016. V. 71. P. 13–24.
  113. Cai Y., Sun Z., Jia H. et al. Rpph1 upregulates CDC42 expression and promotes hippocampal neuron dendritic spine formation by competing with miR-330-5p // Front. Mol. Neurosci. 2017. V. 10. https://doi.org/10.3389/fnmol.2017.00027.
  114. Bottero V., Potashkin J.A. Meta-analysis of gene expression changes in the blood of patients with mild cognitive impairment and Alzheimerʹs disease dementia // Int. J. Mol. Sci. 2019. V. 20. https://doi.org/10.3390/ijms20215403
  115. Lu L., Dai W., Zhu X., Ma T. Analysis of serum miRNAs in Alzheimerʹs disease // Am. J. Alzheimers Dis. Other Demen. 2021. V. 36. https://doi.org/10.1177/15333175211021712.
  116. Dong Z., Gu H., Guo Q. et al. Profiling of serum exosome miRNA reveals the potential of a miRNA panel as diagnostic biomarker for Alzheimerʹs disease // Mol. Neurobiol. 2021. V. 58. P. 3084–3094.
  117. Samadian M., Gholipour M., Hajiesmaeili M. et al. The eminent role of microRNAs in the pathogenesis of Alzheimerʹs disease // Front. Aging Neurosci. 2021. V. 13. https://doi.org/10.3389/fnagi.2021.641080
  118. Cosin-Tomas M., Antonell A., Llado A. et al. Plasma miR-34a-5p and miR-545-3p as early biomarkers of Alzheimerʹs disease: potential and limitations // Mol. Neurobiol. 2017. V. 54. P. 5550–5562. https://doi.org/10.1007/s12035-016-0088-8
  119. Yaqub A., Mens M.M.J., Klap J.M. et al. Genome-wide profiling of circulatory microRNAs associated with cognition and dementia // Alzheimers Dement. 2023. V. 19. P. 1194–1203. https://doi.org/10.1002/alz.12752
  120. Zhang C., Lu J., Liu B. et al. Primate-specific miR-603 is implicated in the risk and pathogenesis of Alzheimerʹs disease // Aging. 2016. V. 8. P. 272–290. https://doi.org/10.18632/aging.100887
  121. Majumder P., Chanda K., Das D. et al. A nexus of miR-1271, PAX4 and ALK/RYK influences the cytoskeletal architectures in Alzheimerʹs Disease and Type 2 Diabetes // Biochem. J. 2021. V. 478. P. 32. https://doi.org/10.1042/BCJ20210175
  122. Qin Z., Han X., Ran J. et al. Exercise-mediated alteration of miR-192-5p is associated with cognitive improvement in Alzheimerʹs disease // Neuroimmunomodulation. 2022. V. 29. P. 36–43. https://doi.org/10.1159/000516928
  123. Dong H., Li J., Huang L. et al. Serum microRNA profiles serve as novel biomarkers for the diagnosis of Alzheimerʹs disease // Dis. Markers. 2015. V. 2015. P. 625659.
  124. Barros-Viegas A.T., Carmona V., Ferreiro E. et al. MiRNA-31 improves cognition and abolishes amyloid-β pathology by targeting APP and BACE1 in an animal model of Alzheimerʹs disease // Mol. Ther. Nucleic Acids. 2020. V. 19. P. 1219-1236. https://doi.org/10.1016/j.omtn.2020.01.010
  125. Sun C., Liu J., Duan F. et al. The role of the microRNA regulatory network in Alzheimerʹs disease: a bioinformatics analysis // Arch. Med. Sci. 2021. V. 18. P. 206–222.
  126. Barak B., Shvarts-Serebro I., Modai S. et al. Opposing actions of environmental enrichment and Alzheimerʹs disease on the expression of hippocampal microRNAs in mouse models // Transl. Psychiatry. 2013. V. 3. e304. https://doi.org/10.1038/tp.2013.77
  127. Tan X., Luo Y., Pi D. et al. MiR-340 reduces the accumulation of amyloid-β through targeting BACE1 (β-site amyloid precursor protein cleaving enzyme 1) in Alzheimerʹs disease // Curr. Neurovasc. Res. 2020. V. 17. P. 86–92. https://doi.org/10.2174/1567202617666200117103931
  128. Dakterzada F., Benitez I.D., Targa A. et al. Reduced levels of miR-342-5p in plasma are associated with worse cognitive evolution in patients with mild Alzheimerʹs disease // Front. Aging Neurosci. 2021. V. 13. https://doi.org/10.3389/fnagi.2021.705989
  129. Hajjri S. N., Sadigh-Eteghad S., Mehrpour M. et al. Beta-amyloid-dependent mirnas as circulating biomarkers in Alzheimerʹs disease: a preliminary report // J. Mol. Neurosci. 2020. V. 70. P. 871–877. https://doi.org/10.1007/s12031-020-01511-0
  130. Hu L., Zhang R., Yuan Q. et al. The emerging role of microRNA-4487/6845-3p in Alzheimerʹs disease pathologies is induced by Aβ25-35 triggered in SH-SY5Y cell // BMC Syst. Biol. 2018. V. 12 (Suppl. 7). P. 119. https://doi.org/10.1186/s12918-018-0633-3
  131. Wang T., Zhao W., Liu Y. et al. MicroRNA-511-3p regulates Aβ1-40 induced decreased cell viability and serves as a candidate biomarker in Alzheimerʹs disease // Exp. Gerontol. 2023. V. 178. https://doi.org/10.1016/j.exger.2023.112195.
  132. Liu Q.Y., Chang M.N.V., Lei J.X. et al. Identification of microRNAs involved in Alzheimerʹs progression using a rabbit model of the disease // Am. J. Neurodegener Dis. 2014. V. 3. P. 33–44.
  133. Xu X., Gu D., Xu B. et al. Circular RNA circ_0005835 promotes neural stem cells proliferation and differentiate to neuron and inhibits inflammatory cytokines levels through miR-576-ep in Alzheimerʹs disease // Environ. Sci. Pollut. Res. Int. 2022. V. 29. P. 35934–35943.
  134. Lau P., Bossers K., Janky R. et al. Alteration of the microRNA network during the progression of Alzheimerʹs disease // EMBO Mol. Med. 2013. V. 5. P. 1613–1634.
  135. Baek S.J., Ban H.J., Park S.M. et al. Circulating microRNAs as potential diagnostic biomarkers for poor sleep quality // Nat. Sci. Sleep. 2021. V. 13. P. 1001–1012. https://doi.org/10.2147/NSS.S311541
  136. Schonrock N., Ke Y.D., Humphreys D. et al. Neuronal microRNA deregulation in response to Alzheimerʹs disease amyloid-β // PLoS One. 2010. V. 5. https://doi.org/10.1371/journal.pone.0011070
  137. Rahman M.R., Islam T., Zaman T. et al. Identification of molecular signatures and pathways to identify novel therapeutic targets in Alzheimerʹs disease: Insights from a systems biomedicine perspective // Genomics. 2020. V. 112. P. 1290–1299.
  138. Di Palo A.D., Siniscalchi C., Crescente G. et al. Effect of cannabidiolic acid, N-trans-caffeoyltyramine and cannabisin B from hemp seeds on microRNA expression in human neural cells // Curr. Issues Mol. Biol. 2022. V. 44. P. 5106–5116.
  139. Tan L., Yu J.T., Tan M.S. et al. Genome-wide serum microRNA expression profiling identifies serum biomarkers for Alzheimerʹs disease // J. Alzheimers Dis. 2014. V. 40. P. 1017–1027. https://doi.org/10.3233/JAD-132144
  140. Zhang Y., Xia Q., Lin J. LncRNA H19 attenuates apoptosis in MPTP-induced Parkinsonʹs disease through regulating miR-585-3p/PIK3R3 // Neurochem. Res. 2020. V. 45. P. 1700–1710. https://doi.org/10.1007/s11064-020-03035-w
  141. Soreq L., Salomonis N., Bronstein M. et al. Small RNA sequencing-microarray analyses in Parkinson leukocytes reveal deep brain stimulation induced splicing changes that classify brain region transcriptomes // Front. Mol. Neurosci. 2013. V. 6. P. 10 https://doi.org/10.3389/fnmol.2013.00010
  142. Marsh A. G., Cottrell M. T., Goldman M. F. Epigenetic DNA methylation profiling with MSRE: A quantitative NGS approach using a Parkinsonʹs disease test case // Front. Genet. 2016. V. 7. https://doi.org/10.3389/fgene.2016.00191
  143. Honorato-Mauer J., Xavier G., Ota V.K. et al. Alterations in microRNA of extracellular vesicles associated with major depression, attention-deficit/hyperactivity and anxiety disorders in adolescents // Transl. Psychiatry. 2023. V. 13. P. 47.
  144. Goen K., Matby V.E., Lea R.A. et al. Erythrocyte microRNA sequencing reveals differential expression in relapsing-remitting multiple sclerosis // BMC Med. Genomics. 2018. V. 11. P. 48. https://doi.org/10.1186/s12920-018-0365-7
  145. Liguori M., Nuzziello N., Licciulli F. et al. Combined microRNA and mRNA expression analysis in pediatric multiple sclerosis: An integrated approach to uncover novel pathogenic mechanisms of the disease // Hum. Mol. Genet. 2018. V. 27. P. 66–79. https://doi.org/10.1093/hmg/ddx385

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схема роли МГЭ в эпигенетическом контроле произошедших от них генов. БКГ – белок-кодирующий ген; МГЭ – мобильный генетический элемент.

Скачать (290KB)

© Российская академия наук, 2024