Different types of CaSiO3 in the Earth’s mantle and its geochemical heterogeneity: the Juina area in Brazil as an example

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

CaSiO3 inclusions in diamonds from the Juina area in Brazil have low Fe (0.08–0.53 wt. % FeO) and Al (0–1.52 wt. % Al2O3) concentrations; they belong to the ultramafic association. Two different types exist among CaSiO3 grains. Type I has a normal REEn pattern, while type II has a sinusoidal REEn pattern. Type I CaSiO3 associates with high-Mg – high-Ni protogenetic ferropericlase, and type II associates with high-Fe – low-Ni syngenetic ferropericlase. Thus, type I CaSiO3 grains are protogenetic, formed, like high-Mg – high-Ni ferropericlase, in the upper part of the lower mantle as davemaoite (CaSi-perovskite), and type II CaSiO3 were formed in the transition zone as breyite. The enrichment of CaSiO3 in REE, particularly in LREE, corresponds to high values of their partition coefficient CaSiO3/melt and shows the Ca-SiO3’s origin from a mantle material under high pressures. The isotope characteristics of the studied CaSiO3 demonstrate strong geochemical heterogeneity in the inclusions. The 87Rb/86Sr ratios in type II CaSiO3 (0.127–3.23) are 3–4 orders higher than in type I (0.0008). Even within a single diamond, different CaSiO3 grains have 87Rb/86Sr ratios varying from 0.014 to 3.23. The same is true for U/Pb isotope systematics (e. g., 238U/206Pb varies in one sample in an order of magnitude from 0.031 to 0.312) and, to some extent, for Sm/Nd ratios. This implies the geo-chemical heterogeneity in Deep Earth on a very small scale.

全文:

受限制的访问

作者简介

F. Kaminsky

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: kaminsky@geokhi.ru
ORCID iD: 0000-0001-6035-7114
俄罗斯联邦, Kosygin Str., 19, Moscow, 119991

Yu. Kostitsyn

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: kaminsky@geokhi.ru
俄罗斯联邦, Kosygin Str., 19, Moscow, 119991

参考

  1. Костицын Ю.А. (2004) Sm–Nd и Lu–Hf изотопные системы Земли: отвечают ли они хондритам? Петрология. 12(5), 451–466.
  2. Костицын Ю.А. (2007) Взаимосвязь между химической и изотопной (Sr, Nd, Hf, Pb) гетерогенностью мантии. Геохимия. 12, 1267–1291.
  3. Kostitsyn Yu.A. (2007) Relationships between chemical and isotopic (Sr, Nd, Hf, and Pb) heterogeneity of the mantle. Geochem. Int. 45(12), 1173–1196. https://doi.org/10.1134/S0016702907120014
  4. Лаврентьев Ю.Г., Карманов Н.С., Усова Л.В. (2015) Электронно-зондовое определение состава минералов: Микроанализатор или сканирующий электронный микроскоп. Геология и Геофизика. 56(8), 1473–1482. https://doi.org/10.15372/GiG20150806
  5. Akaogi M. (2007) Phase transitions of minerals in the transition zone and upper part of the lower mantle. In Ohtani E. (ed) Advances in High-Pressure Mineralogy. Geol. Soc. Amer. Spec. Paper. 421, 1–13. https://doi.org/10.1130/2007.2421(01)
  6. Araujo D.P., Gaspar J.C., Bulanova G.P., Smith C.B., Kohn S.C., Walter M.J., Hauri E.H. (2013) Juina diamonds from kimberlites and alluvials: a comparison of morphology, spectral characteristics, and carbon isotope composition. Proceedings of the 10th. International Kimberlite Conference, Special Issue of the Journal of the Geol. Soc. India. 1, 255–269. https://doi.org/10.1007/978-81-322-1170-9_16.
  7. Brenker F.E., Nestola F., Brenker L., Peruzzo L., Harris J.W. (2021) Origin, properties, and structure of breyite: The second most abundant mineral inclusion in super-deep diamonds. Am. Mineral. 106, 38–43. https://doi.org/10.2138/am-2020-7513
  8. Brey G.P., Bulatov V., Girnis A., Harris J.W., Stachel T. (2004) Ferropericlase – a lower mantle phase in the upper mantle. Lithos. 77, 655–663.
  9. Bulanova G.P., Smith C.B., Kohn S.C., Walter M.J., Gobbo L., Kearns S. (2008) Machado River, Brazil – a newly recognized ultradeep diamond occurrence. 9th International Kimberlite Conference Extended Abstract No. 9IKC–A-00233.
  10. Bulanova G.P., Walter M.J., Smith C.B., Kohn S.C., Armstrong L.S., Blundy J., Gobbo L. (2010) Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: subducted protoliths, carbonated melts and primary kimberlite magmatism. Contrib. Mineral. Petr. 160, 489–510. https://doi.org/10.1007/s00410-010-0490-6
  11. Bulatov V.K., Girnis A.V., Brey G.P., Woodland A.B., Höfer H.E. (2019) Ferropericlase crystallization under upper mantle conditions. Contrib. Mineral. Petr. 174, 45. https://doi.org/10.1007/s00410-019-1582-6
  12. Burnham A.D., Bulanova G.P., Smith C.B., Whitehead S.C., Kohn S.C., Gobbo L., Walter M.J. (2016) Diamonds from the Machado River alluvial deposit, Rondônia, Brazil, derived from both lithospheric and sublithospheric mantle. Lithos. 265, 199–213. https://doi.org/10.1016/j.lithos.2016.05.022
  13. Cabral-Neto I., Ruberti E., Pearson D.G., Luo Y., Azzone R.G., Silveira F.V., Almeida V.V. (2024) Diamond sources of the Juina region, Amazonian craton: textural and mineral chemical characteristics of Kimberley-type pyroclastic kimberlites. Mineral. Petrol. 118, 1–22. https://doi.org/10.1007/s00710-023-00849-8
  14. Carlson R.W., Czamanske G., Fedorenko V., Ilupin I. (2006) A comparison of Siberian meimechites and kimberlites: Implications for the source of high-Mg alkalic magmas and flood basalts. Geochem. Geophys. Geosyst. 7(11), Q11014. https://doi.org/10.1029/2006GC001342
  15. Coleman, R.G., Lee, D.E., Beatty, L.B., Brannock, W.W. (1965) Eclogites and eclogites – their differences and similarities. Geol. Soc. Amer. Bull. 76, 483–508.
  16. Cordani U.G., Teixeira W. (2007) Proterozoic accretionary belts in the Amazonian Craton. In Hatcher R.D., Jr., Carlson M.P., McBride J.H., Martínez-Catalán J.R. (eds) 4-D Framework of Continental Crust. 297–320. Geol. Soc. Amer. Mem. 200, 297–320. https://doi.org/10.1130/2007.1200(14)
  17. Corgne A., Wood B.J. (2005) Trace element partitioning and substitution mechanisms in calcium perovskites. Contrib. Mineral. Petrol. 149, 85–97. https://doi.org/10.1007/s00410-004-0638-3
  18. Corgne A., Allan N.L., Wood B.J. (2003) Atomistic simulations of trace element incorporation into the large site of MgSiO3 and CaSiO3 perovskites. Physics of Earth and Planetary Interiors. 139, 113–127.
  19. Corgne A., Liebske C., Wood B.J., Rubie D.C., Frost D.J. (2005) Silicate perovskite-melt partitioning of trace elements and geochemical signature of a deep perovskitic reservoir. Geochimiva et Cosmochemica Acta. 69(2), 485–496. https://doi.org/10.1016j.gca.2004.06.041
  20. Creighton S., Stachel T., Matveev S., Hofer H., McCammon C., Luth R.W. (2009) Oxidation of the Kaapvaal lithospheric mantle driven by metasomatism. Contrib. Mineral. Petr. 157, 491–504. https://doi.org/10.1007/s00410-008-0348-3
  21. Dorfman S.M. (2016) Phase diagrams and thermodynamics of lower mantle materials. In: Terasaki H., Fischer R.A. (eds) Deep Earth; physics and chemistry of the lower mantle and core, Geophys. Monograph. 217, 241–252.
  22. Fraser K.J., Hawkesworth C.J. (1992) The petrogenesis of Group-2 ultrapotassic kimberlites from Finsch Mine, South Africa. Lithos. 28(3–6), 327–345.
  23. Gibson S.A., Thompson R.N., Dickin A.P., Leonardos O.H. (1995) High-Ti and low-Ti mafic potassic magmas – key to plume- lithosphere lnteractions and continental flood-basalt genesis. Earth Planet. Sci. Lett. 136(3–4), 149–165.
  24. Godard G. (2001) Eclogites and their geodynamic interpretation: a history. J. Geodyn. 32(1–2), 165–203.
  25. Harte B., Harris J.W., Hutchison M.T., Watt G.R., Wilding M.C. (1999) Lower mantle mineral associations in diamonds from Sao Luiz, Brazil. In: Fei Y., Bertka C.M., Mysen B.O. (eds) Mantle Petrology: Field Observations and High Pressure Experimentation: A tribute to Francis R. (Joe) Boyd. Geochem. Soc. Spec. Publ. 6, 125–153.
  26. Hayman P.C., Kopylova M.G., Kaminsky F.V. (2005) Lower mantle diamonds from Rio Soriso (Juina, Brazil). Contrib. Mineral. Petr. 149, 430–445. https://doi.org/10.1007/s00410-005-0657-8
  27. Heaman L., Teixeira N.A., Gobbo L., Gaspar J.C. (1998) U–Pb mantle zircon ages for kimberlites from the Juina and Paranatinga Provinces, Brazil. Seventh International Kimberlite Conference Extended Abstracts. Cape Town, April 1998, 322–324.
  28. Huang J.-X., Gréau Y., Griffin W.L., O’Reilly S.Y., Pearson N.J. (2012) Multi-stage origin of Roberts Victor eclogites: Progressive metasomatism and its isotopic effects. Lithos. 142–143, 161–181. https://doi.org/10.106/j.lithos.2012.03.002
  29. Hutchison M.T., Dale C.W., Nowell G.M., Laiginhas F.A., Pearson D.G. (2012) Age constraints on ultra-deep mantle petrology shown by Juina diamonds. 10th Internat. Kimberlite Conference Extended Abstract 10IKC-184. https://doi.org/10.29173/ikc3733
  30. Kaminsky F.V. (2017) The Earth’s Lower Mantle: Composition and Structure, 331 pp. Springer. https://doi.org/10.1007/978-3-319-55684-0
  31. Kaminsky F.V., Zakharchenko O.D., Davies R., Griffin W.L., Khachatryan-Blinova G.K., Shiryaev A.A. (2001) Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contrib. Mineral. Petr. 140(6), 734–753. https://doi.org/10.1007/s004100000221
  32. Kaminsky F.V., Sablukov S.M., Belousova E.A., Andreazza P., Tremblay M., Griffin W.L. (2010) Kimberlitic sources of super-deep diamonds in the Juina area, Mato Grosso State, Brazil. Lithos.114, 16–29. https://doi.org/10.1016/j.lithos.2009.07.012
  33. Kaminsky F.V., Zedgenizov D.A., Sevastyanov V.S., Kuzne-tsova O.V. (2023) Distinct groups of low- and high-Fe ferropericlase inclusions in super-deep diamonds: an example from the Juina area, Brazil. Minerals. 13(9), 1217. https://doi.org/10.3390/min13091217
  34. Kargin A.V., Golubeva Yu.Yu., Kononova V.A. (2011) Kimberlites of the Daldyn-Alakit region (Yakutia): Spatial distribution of the rocks with different chemical characteristics. Petrology. 19, 496–520. https://doi.org/10.1134/S086959111105002X
  35. Lorenzon S., Wenz M., Nimis P., Jacobsen S.D., Pasqualetto L., Pamato M.G., Novella D., Zhang D., Anzolini C., Regier M., Stachel T., Pearson G., Harris J.F., Nestola F. (2023) Dual origin of ferropericlase inclusions within super-deep diamonds. Earth Planet. Sci. Lett. 608: 118081. https://doi.org/10.1016/j.epsl.2023.118081
  36. McDonough W.F., Sun S.-s. (1995) The composition of the Earth. Chem. Geol. 120(3–4), 223–253.
  37. Milani S., Comboni D., Lotti P., Fumagalli P., Ziberna L., Maurice J., Hanfland M., Merlini M. (2021) Crystal structure evolution of CaSiO3 polymorphs at Earth’s mantle pressures. Minerals. 11, 652. https://doi.org/0.3390/min1106065
  38. Nestola F., Pamato M.G., Novella D. (2023) Going inside a diamond. In: Bindi L., Cruciani G. (eds) Celebrating the International Year of Mineralogy, 249–263. https://doi.org/10.1007/978-3-031-28805-0_10
  39. Palot M.P., Cartigny P., Harris J.W., Kaminsky F.V., Stachel T. (2012) Evidence for deep mantle convection and primordial heterogeneity from N and C stable isotopes in diamond. Earth and Planetary Science Letters. Earth Planet. Sci. Lett. 357–358, 179–193. https://doi.org/10.1016/j.epsl.2012.09.015
  40. Shirey S.B., Pearson I.D.G., Stachel T., Walter M.J. (2024) Sublithospheric diamonds: Plate tectonics from Earth’s deepest mantle samples. Ann. Rev. Earth Planet. Sci. 52, 9.1–9.45. https://doi.org/10.1146/annurev-earth-032320-105438
  41. Smit K.V., Timmerman S., Aulbach S., Shirey S.B., Richard-son S.H., Phillips D., Pearson D.G. (2022) Geochronology of diamonds. Reviews in Mineralogy and Geochemistry. 88, 567–636.
  42. Stachel T., Harris J.W., Brey G.P., Joswig W. (2000) Kankan diamonds (Guinea) II: Lower mantle inclusion parageneses. Contrib. Mineral. Petr. 140(1), 16–27.
  43. Teixeira W., Cordani U.G. (2008) Proterozoic evolution of the Amazonian Craton Reviewed. Indian J. Geol. 80(1–4), 115–137.
  44. Thomson A.R., Kohn S.C., Bulanova G.P., Smith C.B., Araujo D., Walter M.J. (2016a) Trace element composition of silicate inclusions in sub-lithospheric diamonds from the Juina-5 kimberlite: Evidence for diamond growth from slab melts. Lithos. 265, 108–124. https://doi.org/10.1016/j.lithos.2016.08.035
  45. Thomson A.R., Walter M.J., Kohn S.C., Brooker R.A. (2016b) Slab melting as a barrier to deep carbon subduction. Nature. 529, 76–79. https://doi.org/10.1038/nature1617
  46. Timmerman S., Stachel T., Koornneef J.M., Smit K.V., Harlou R., Nowell G.M., Thomson A.R., Kohn S.C., Davies J.H.F.L., Davies G.R., Kreb M.Y., Zhang Q., Milne S.E.M., Harris J.W., Kaminsky F.V., Zedgenizov D., Bulanova G., Smith C.B., Neto I.C., Silveira F.V., Burnham A.D., Nestola F., Shirey S.B., Walter M.J., Steele A., Pearson D.G. (2023) Sublithospheric diamonds and supercontinent cycle. Nature. 623, 752–756. https://doi.org/10.1038/s41586-023-06662-9
  47. Tschauner O., Huang S., Yang S., Humayun M., Liu W., Corder S.N.G, Bechte H.A., Tischler J., Rossman G.R. (2021) Discovery of davemaoite, CaSiO3-perovskite, as a mineral from the lower mantle. Science. 374(6569), 891–894. https://doi.org/10.1126/science.abl8568
  48. Tschauner O., Huang S., Humayun M., Liu W., Rossman G.R. (2022) Response to comment on “Discovery of davemaoite, CaSiO3-perovskite, as a mineral from the lower mantle”. Science. 376(6593). https://doi.org/10.1126/science.abo2029
  49. Tsuchiya T., Kawai K. (2013) Ab initio mineralogical model of the Earth’s lower mantle. In: Karato S-I, (ed) Phys. Chem. Deep Earth. 213–243. John Wiley & Sons, Somerset, NJ, USA.
  50. Walter M.J., Thomson A.R., Smith E.M. (2022) Geochemistry of silicate and oxide inclusions in sublithospheric diamonds. Rev. Miner. Geochem. 88. 393–450. https://doi.org/10.2138/rmg.2022.88.07
  51. Zedgenizov D.A., Kagi H., Shatsky V.S., Ragozin A.L. (2014) Local variations of carbon isotope compositionin diamonds from Sao-Luis (Brazil): Evidence for heterogenous carbon reservoir in sublithospheric mantle. Chem. Geol. 240(1–2), 114–124. https://doi.org/10.1016/j.chemgeo.2013.10.033
  52. Zhang O., Timmerman S., Stachel T., Chinn I., Stern R.A., Davies J., Nestola F., Luth R.L., Pearson D.G. (2024) Sublithospheric diamonds extend Paleoproterozoic record of cold deep subduction into the lower mantle. Earth Planet. Sci. Lett. 634, 118675. https://doi.org/10.1016/j.epsl.2024.118675

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The Juina diamondiferous district and the location of the Rio Sorriso placer (red star). Modified from Kaminsky et al. (2010).

下载 (1MB)
3. Fig. 2. Position of the Juina region (red star) in the Amazon Craton. Modified from Cordani and Teixeira (2007).

下载 (1MB)
4. Fig. 3. Ages of inclusions in diamonds from the Juina area. Data from Bulanova et al. (2010), Hutchison et al. (2012), Smit et al. (2022), Nestola et al. (2023), Timmerman et al. (2023).

下载 (1MB)
5. Fig. 4. CaSiO3 inclusions exposed on the polished surface of diamonds. After Timmerman et al. (2023). © Nature.

下载 (728KB)
6. Fig. 5. Chemical compositions of CaSiO3 inclusions of ultramafic and mafic parageneses. All four studied CaSiO3 inclusions from the Rio Sorriso placer (shown with asterisks) belong to the ultramafic paragenesis. Based on (Kaminsky, 2017, Fig. 5.5a).

下载 (606KB)
7. Fig. 6. Chondrite-normalized REE distribution in CaSiO3 included in diamonds from the Rio Sorriso placer. The shaded green area shows REE variations in sample #2.2.3. The thin gray line shows the REE distribution between CaSiO3-perovskite and melt after Corgne et al. (2005). Analytical data after Timmerman et al. (2023). Chondrite data after McDonough, Sun (1995). Data for the Machado sample after Burnham et al. (2016).

下载 (1015KB)
8. Fig. 7. Ratio of medium and heavy with light REE in the studied CaSiO3 samples. Data source – Table 2. The red star corresponds to the chondrite composition according to McDonough, Sun (1995).

下载 (484KB)
9. Fig. 8. Rb–Sr (a), Sm–Nd (b), and Pb (c) isotopic data for the studied CaSiO3 inclusions in diamonds from the Juina area. MORB and OIB data from Kostitsyn (2004, 2007). For comparison, Figs. (a) and (b) also show the lines corresponding to the age of the Juina pipe – 90 Ma. The analytical points do not fall on this line or on any other.

下载 (41KB)

版权所有 © Russian Academy of Sciences, 2025