Evaporation features of the melts of Ca–Al–inclusions in chondrites: experimental data and their implications

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper presents experimental results on the evaporation of the main types (A and B) of Ca–Al inclusions of chondrites in a Knudsen tungsten cell in the temperature range of 1000–2400 °C. A peculiarity of the evaporation of the inclusions is that the silicon component is preserved in the residual melt to high temperatures exceeding 2200 °C. At the same time, magnesium oxide completely evaporates from the melt, which leads to a decrease in the spinel content and even its disappearance during the crystallization of the residual melt at 2000 °C. Magnesium evaporation leads, in turn, to an increase in the Al2O3 content in the melt and, accordingly, to an increase in the content of gehlenite in melilite during its crystallization, as is observed in the high-temperature rims of subtype B1 inclusions. Experiments have also shown that the high-temperature evaporation of Ca–Al inclusions occurs in an oxygen-rich atmosphere compared to carbonaceous chondrite matter. In this regard, it is assumed that the condensation of the first mineral products of the inclusions occurred in the oxygen-rich atmosphere of the star (O-rich AGB) outside the protosolar system.

About the authors

S. I. Shornikov

Vernadsky Institute of Geochemistry and Analytical Chemistry

Author for correspondence.
Email: sergey.shornikov@gmail.com
Kosygin Str., 19, Moscow, 119991 Russia

O. I. Yakovlev

Vernadsky Institute of Geochemistry and Analytical Chemistry

Email: yakovlev@geokhi.ru
Kosygin Str., 19, Moscow, 119991 Russia

References

  1. Глушко В.П., Гурвич Л.В., Бергман Г.А., Вейц И.В., Медведев В.А., Хачкурузов Г.А., Юнгман В.С. (1978–1982) Термодинамические свойства индивидуальных веществ. Справочник (под ред. В.П. Глушко). М.: Наука.
  2. Дьяконова М.И., Харитонова В.Я., Явнель А.А. (1979) Химический состав метеоритов. М.: Наука. 68 с.
  3. Иванова М.А. (2023) Обзор основных исследований первого твердого вещества, образованного в солнечной системе. Геохимия, 68 (8), 1–137.
  4. Ivanova M.A. (2023) Principal studies of the first solid material formed in the early solar system:a review. Geochem. Int. 61 (8), 781–909.
  5. Маркова О.М., Яковлев О.И., Семенов Г.А., Белов А.Н. (1986) Некоторые общие результаты экспериментов по испарению природных расплавов в камере Кнудсена. Геохимия 23 (11), 1559–1569.
  6. Назаров М.А., Корина М.И., Ульянов А.А., Колесов Г.М., Щербовский Е.Я. (1984) Минералогия, петрография и химический состав богатых кальцием и алюминием включений метеорита Ефремовка. Метеоритика (43), 49–65.
  7. Семенов Г.А., Николаев Е.Н., Францева К.Е. (1976) Применение масс-спектрометрии в неорганической химии. Л.: Химия. 152 с.
  8. Шорников С.И., Столярова В.Л., Шульц М.М. (1996) Масс-спектрометрическое исследование термодинамических свойств расплавов системы CaO–Al2O3–SiO2. Техника и технология силикатов 3 (1–2), 8–22.
  9. Шуколюков Ю.А. (1996) Звездная пыль в руках. Соросовский образовательный журнал (7), 74–80.
  10. Яковлев О.И., Маркова О.М., Семенов Г.А., Белов А.Н. (1984) Результаты эксперимента по испарению хондрита Крымка. Метеоритика (43), 126–132.
  11. Яковлев О.И., Маркова О.М., Белов А.Н., Семенов Г.А. (1987) Об образовании металлической формы железа при нагревании хондритов. Метеоритика (46), 104–118.
  12. Яковлев О.И., Рязанцев К.М., Шорников С.И. (2017) Роль кислотно-основного фактора при испарении тугоплавких включений хондритов. Геохимия 55 (3), 224–229.
  13. Yakovlev O.I., Ryazantsev K.M., Shornikov S.I. (2017) The role of acidity–basicity in evaporating refractory inclusions in chondrites. Geochem. Int. 55 (3), 251–256.
  14. Amelin Y., Krot A.N., Hutcheon I.D., Ulyanov A.A. (2002) Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science 297 (5587), 1678–1683.
  15. Amelin Y., Kaltenbach A., Iizuka T., Stirling C.H., Ireland T.R., Petaev M., Jacobsen S.B. (2010) U–Pb chronology of the Solar System’s oldest solids with variable 238U/235U. Earth Planet. Sci. Lett. 300 (3–4), 343–350.
  16. Bale C.W., Belisle E., Chartrand P., Decterov S.A., Eriksson G., Gheribi A.E., Hack K., Jung I.-H., Kang Y.-B., Melancon C., Pelton A.D., Petersen S., Robelin C., Sangster J., Spencer P., Van Ende M-A. (2016) FactSage thermochemical software and databases, 2010–2016. CALPHAD 54, 35–53.
  17. Cameron A.G.W. (2003) Some nucleosynthesis effects associated with r-process jets. Astrophys. J. 587, 327–340.
  18. Cameron A.G.W. (2004) Meteoritical astrophysics: a new subdiscipline. Workshop on chondrites and protoplanetary disk, 9015.
  19. Cameron A.G.W., Lodders K. (2004) Interpretation of the meteoritic extinct radioactivity – mean life relation. Lunar Planet. Sci. 35, 1181.
  20. Clayton R.N., Grossman L., Mayeda T.K. (1973) A component of primitive nuclear composition in carbonaceous meteorites. Science 182 (4111), 485–488.
  21. Connelly J.N., Bizzarro M., Krot A.N., Nordlund A., Wielandt D., Ivanova M.A. (2012) The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338 (6107), 651–655.
  22. Dauphas N., Schauble E.A. (2016) Mass fractionation laws, mass-independent effects, and isotopic anomalies. Ann. Rev. Earth Planet. Sci. 44 (1), 709–783.
  23. Drowart J., Exsteen G., Verhaegen G. (1964) Mass spectrometric determination of the dissociation energy of the molecules MgO, CaO, SrO and Sr2O. Trans. Faraday Soc. 60 (11), 1920–1933.
  24. Grossman L. (1972) Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta 36 (5), 597–619.
  25. Grossman L., Ebel D.S., Simon S.B., Davis A.M., Richter F.M., Parsad N.M. (2000) Major element chemical and isotopic compositions of refractory inclusions in C3 chondrites: the separate roles of condensation and evaporation. Geochim. Cosmochim. Acta 64 (16), 2879–2894.
  26. Grossman L., Simon S.B., Rai V.K., Thiemens M.H., Hutcheon I.D., Williams R.W., Galy A., Ding T., Fedkin A.V., Clayton R.N., Mayeda T.K. (2008) Primordial compositions of refractory inclusions. Geochim. Cosmochim. Acta 72 (12), 3001–3021.
  27. Haenecour P., Floss C., Yada T. (2012) Heterogeneous distribution of supernjva silicate and oxide grains in the solar system? Ann. Met. Soc. Meet. 75, 5220.
  28. Heras A., Hony S. (2005) Oxygen-rich AGB stars with optically thin dust envelopes. Astron. Astrophys. 439, 171–182.
  29. Kamibayashi M., Tachibana S., Yamamoto D., Kawasaki N., Yurimoto H. (2021) Effect of hydrogen gas pressure on calcium–aluminum-rich inclusion formation in the protosolar disk: a laboratory simulation of open-system melt crystallization. Astrophys. J. Lett. 923 (1), L12.
  30. Kerekgyarto A.G., Jeffcoat C.R., Lapen T.J., Andreasen R., Righter M., Ross D.K. (2014) Stable magnesium isotope variation in melilite mantle of Allende type B1 CAI EK 459-5-1. Lunar Planet. Sci. 45, JSC–CN-30446.
  31. Kerekgyarto A.G., Jeffcoat C.R., Lapen T.J., Andreasen R., Righter M., Ross D.K., Simon J.I. (2016). Al-Mg isotope study of Allende 5241. Lunar Planet. Sci. 47, JSC-CN-35195.
  32. Lewis G.N., Randall M. (1923) Thermodynamics and the free energy of chemical substances. N. Y.: McGraw-Hill, 653 p.
  33. MacPherson G.J. (2014) Calcium-aluminum-rich inclusions in chondritic meteorites. Treatise on Geochemistry 1, 139–179.
  34. MacPherson G.J. (2019) CAIs did not form in the outer Solar system. Lunar Planet. Sci. 50, 3005.
  35. Mendybaev R.A., Richter F.M., Davis A.M. (2006) Crystallization of melilite from CMAS-liquids and the formation of the melilite mantle of type B1 CAIs: experimental simulations. Geochim. Cosmochim. Acta 70 (10), 2622–2642.
  36. Mendybaev R.A., Richter F.M., Georg R.B., Janney P.E., Spicuzza M.J., Davis A.M., Valley J.W. (2013). Experimental evaporation of Mg- and Si-rich melts: implications for the origin and evolution of FUN CAIs. Geochim. Cosmochim. Acta 123, 368–384.
  37. Mendybaev R.A., Richter F.M., Williams C.D., Fedkin A.V., Wadhwa M. (2014) Evolution of chemical and isotopic composition of FUN CAIs: experimental modelling. Lunar Planet. Sci. 45, 2782.
  38. Meyer B.S., Berminghem K.R. (2020) Exploding white dwarf stars and the carriers of nucleosynthetic isotope anomalies. Lunar Planet. Sci. 51, 2652.
  39. Nittler L.R. (2005) Calcium-aluminum-rich inclusions are not supernova condensates. Chondrites and the protoplanetary disk 341, 539–547.
  40. Nittler L.R., Ciesla F. (2016) Astrophysics with extraterrestrial materials. Ann. Rev. Astr. Astrophys. 54 (1), 53–93.
  41. Paule R.C., Mandel J. (1972) Analysis of interlaboratory measurements of the vapor pressure of gold. J. Pure Appl. Chem. 31 (3), 371–394.
  42. Richter F.M., Davis A.M., Mendybaev R.A. (2002). How the type B1 CAIs got their melilite mantle. Lunar Planet. Sci. 53, 1901.
  43. Richter F.M., Mendybaev R.A., Davis A.M. (2006) Conditions in the protoplanetary disk as seen by the type B CAIs. Met. Planet. Sci. 41 (1), 83–93.
  44. Sahijpal S., Soni P. (2006) Stellar nucleosynthetic contribution of extinct short-lived nuclei in the early solar system and the associated isotopic effects. Met. Planet. Sci. 41 (6), 953–976.
  45. Shornikov S.I., Archakov I.Yu., Shultz M.M. (2000) Mass spectrometric study of evaporation and thermodynamic properties of silica: III. Equilibrium reactions of molecules occurring in the gas phase over silica. Russ. J. Gener. Chem. 70 (3), 360–370.
  46. Shornikov S.I. (2007) Thermodynamic properties of CaO–Al2O3–SiO2 melts. Experiment in Geosciences 14 (1), 35–37.
  47. Shornikov S.I. (2017) Thermodynamic properties of spinel MgAl2O4: a mass spectrometric study. Russ. J. Phys. Chem. A 91 (2), 287–294.
  48. Shornikov S.I., Yakovlev O.I. (2023) Mass spectrometric study of evaporation of natural CAIs melts (types A and B) in the Efremovka chondrite. Lunar Planet. Sci. 54, 1983.
  49. Stolper E. (1982) Crystallization sequences of Ca–Al–rich inclusions from Allende: an experimental study. Geochim. Cosmochim. Acta 46 (11), 2159–2180.
  50. Stolper E., Paque J.M. (1986) Crystallization sequences of Ca-Al-rich inclusions from Allende: the effects of cooling rate and maximum temperature. Geochim. Cosmochim. Acta 50 (8), 1785–1806.
  51. Tsuruoka Y., Tachibana S. (2024) Evaporation-induced formation of melilite mantle of type B CAI: experimental study. Met. Planet. Sci. 58 (S1), A6077.
  52. Wark D.A., Lovering J.F. (1982) The nature and origin of type B1 and B2 Ca–Al-rich inclusions in the Allende meteorite. Geochim. Cosmochim. Acta 46 (12), 2581–2594.
  53. Wark D.A., Boynton W.V. (2001) The formation of rims on calcium-aluminum inclusions: step I – flash heating. Met. Planet. Sci. 36 (8), 1135–1166.
  54. Yakovlev O.I., Markova O.M., Semenov G.A., Belov A.N. (1984) The vaporization peculiarities of CAI inclusions in chondrites: experimental data. Lunar Planet. Sci. 15, 945–946.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences