Equation for Calculation of Saturated Water Contents in Silicate Melts: New Version

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

On the basis of literature sources, a sample of experimental data was formed. The sample contains the results of 394 hardening experiments characterizing the saturated water content in a wide range of intensive parameters of silicate systems. An analysis of the main published types of models of water solubility in a silicate melt showed that the equation of Gordon Moore et al. best describes the experimental results.
The Moore equation, converted to exponential form, is recalibrated on an extended experimental sample. As a result, new coefficients for this equation are obtained: a = 918; bAl2O3 = – 0.712; bFeO = – 0.749; bNa2O = 0.806; c = 1.087; d = -11.45. The Moore equation with new coefficients makes it possible, with an error not exceeding ±1 - ±2 relative percent, to predict the saturated water content in silicate melts in the range: melt compositions from basalts to rhyolites; pressure from atmospheric to 15 kbar; temperatures from 550 to 1300 °C.

Авторлар туралы

Ya. Gnuchev

Lomonosov Moscow State University, Faculty of Geology

Email: gnuchevyakov@mail.ru
Russia, 119991, Moscow, GSP-1,1 Leninskiye Gory

D. Bychkov

Lomonosov Moscow State University, Faculty of Geology

Email: dmibychkov@gmail.com
Russia, 119991, Moscow, GSP-1,1 Leninskiye Gory

E. Koptev-Dvornikov

Lomonosov Moscow State University, Faculty of Geology

Хат алмасуға жауапты Автор.
Email: ekoptevmail@gmail.com
Russia, 119991, Moscow, GSP-1,1 Leninskiye Gory

Әдебиет тізімі

  1. Альмеев Р.Р., Арискин А.А. (1996) ЭВМ–моделирование расплавно-минеральных равновесий в водосодержащей базальтовой системе. Геохимия. (7), 624-636.
  2. Арискин А.А., Мешалкин С.С., Альмеев Р.Р., Бармина Г.С., Николаев Г.С. (1997) Информационно-поисковая система ИНФОРЭКС: анализ и обработка экспериментальных данных по колебанию состава изверженных пород. Петрология. 5(1), 32-41.
  3. Арискин А.А., Бармина Г.С. (2000) Моделирование фазовых равновесий при кристаллизации базальтовых магм. М.: Наука/Интерпериодика, 363.
  4. Арьяева Н.С., Коптев-Дворников Е.В., Бычков Д.А. (2016) Ликвидусный термобарометр для моделирования равновесия хромшпинелиды-расплав: метод вывода и верификация. Вестник Московского университета. Серия 4: Геология. (4), 30-39.
  5. Воробьев С. А. (2016) Информатика. Математическая обработка геолого-геохимических данных. Учебное пособие. Барнаул: Новый формат, 266.
  6. Кадик А.А., Лебедев Е.Б., Хитаров Н.И. (1971) Вода в магматических расплавах. М.: Наука, 268.
  7. Кадик А.А., Максимов А.П., Иванов Б.В. (1986) Физико-химические условия кристаллизации и генезис андезитов (на примере Ключевской группы вулканов). М.: Наука, 158 с.
  8. Коптев-Дворников Е.В., Арьяева Н.С., Бычков Д.А. (2012) Уравнение термобарометра для описания сульфид-силикатной ликвации в базитовых системах. Петрология. 20(5), 495-495.
  9. Коптев-Дворников Е.В., Бычков Д.А. (2019) Разработка ликвидусного термобарометра для моделирования равновесия оливин-расплав. Вестник Московского университета. Серия 4: Геология. (5), 62-74.
  10. Коптев-Дворников Е.В., Романова Е.С., Бычков Д.А. (2020) Ортопироксеновый термобарометр-композитометр для диапазона составов от магнезиальных базитов до дацитов. Труды Всероссийского ежегодного семинара по экспериментальной минералогии, петрологии и геохимии, 74-77.
  11. Миронов А.Г., Эпельбаум М.Б., Чехмир А.С. (1993) Экспериментальное определение относительной растворимости воды в гранитных и базальтовых расплавах при 900–1100°С и 2 кбар тритиевым авторадиографическим методом. Геохимия. (4), 487-498.
  12. Романова Е.С., Коптев-Дворников Е.В., Бычков Д.А. (2020) Пижонитовый ликвидусный термобарометр для диапазона составов расплавов от магнезиальных базитов до дацитов. Труды Всероссийского ежегодного семинара по экспериментальной минералогии, петрологии и геохимии, 90-93.
  13. Хитаров Н.И., Кадик А.А., Лебедев Е.Б. (1986) Растворимость воды в расплавах базальта. Геохимия. (7), 763.
  14. Ariskin A.A., Barmina G.S., Meshalkin S.S., Nikolaev G.S., Almeev R.R. (1996) INFOREX–3.0: A database on experimental studies of phase equilibria in igneous rocks and synthetic systems: II. Data description and petrological applications. Comput. Geosci. 22(10), 1073-1082.
  15. Baker L.L., Rutherford M.J. (1996) The effect of dissolved water on the oxidation state of silicic melts. Geochim. Cosmochim. Acta. 60(12), 2179-2187.
  16. Behrens H., Jantos N. (2001) The effect of anhydrous composition on water solubility in granitic melts. Am. Mineral. 86(1–2), 14-20.
  17. Berndt J., Liebske C., Holtz F., Freise M., Nowak M., Ziegenbein, Hurkuck W., Koepke J. (2002) A combined rapid-quench and H2-membrane setup for internally heated pressure vessels: Description and application for water solubility in basaltic melts. Am. Mineral. 87(11–12), 1717-1726.
  18. Botcharnikov R.E., Koepke J., Holtz F., McCammon C., Wilke M. (2005) The effect of water activity on the oxidation and structural state of Fe in a ferro-basaltic melt. Geochim. Cosmochim. Acta. 69(21), 5071-5085.
  19. Carroll M.R., Blank J.G. (1997) The solubility of H2O in phonolitic melts. Am. Mineral. 82(5–6), 549-556.
  20. Clemens J.D., Holloway J.R., White A.J.R. (1986) Origin of an A-type granite: Experimental constraints. Am. Mineral. 71(3/4), 317-324.
  21. Crisp L.J., Berry A.J. (2022) A new model for zircon saturation in silicate melts. Contrib. Mineral. Petrol. 177(7), 71.
  22. Devine J.D., Gardner J.E., Brack H.P., Layne G.D., Rutherford M.J. (1995) Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. Am. Mineral. 80(3–4), 319-328.
  23. Devine J.D., Gardner J.E., Brack H.P., Layne G.D., Rutherford M.J. (1995) Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. Am. Mineral. 80(3–4), 319-328.
  24. Dixon J.E., Stolper E.M., Holloway J.R. (1995) An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part 1: Calibration and solubility models. J. Petrol. 36(6), 1607-1631.
  25. Erdmann M., Fischer L.A., France L., Zhang C., Godard M., Koepke J. (2015) Anatexis at the roof of an oceanic magma chamber at IODP Site 1256 (equatorial Pacific): an experimental study. Contrib. Mineral. Petrol. 169(4), 1-28.
  26. Feig S.T., Koepke J., Snow J.E. (2010) Effect of oxygen fugacity and water on phase equilibria of a hydrous tholeiitic basalt. Contrib. Mineral. Petrol. 160(4), 551-568.
  27. Hamilton D.L., Burnham C.W., Osborn E.F. (1964) The solubility of water and effects of oxygen fugacity and water content on crystallization in mafic magmas. J. Petrol. 5(1), 21-39.
  28. Herzberg C., O’Hara M.J. (2002) Plume-associated ultramafic magmas of Phanerozoic age. J. Petrol. 43(10), 1857-1883.
  29. Herzberg C., O’Hara M.J. (2002) Plume-associated ultramafic magmas of Phanerozoic age. J. Petrol. 43(10), 1857-1883.
  30. Liu Y., Zhang Y., Behrens H. (2005) Solubility of H2O in rhyolitic melts at low pressures and a new empirical model for mixed H2O–CO2 solubility in rhyolitic melts. J. Volcanol. Geotherm. Res. 143(1–3), 219-235.
  31. Martel C., Pichavant M., Holtz F., Scaillet B., Bourdier J.L., Traineau H. (1999) Effects of fO2 and H2O on andesite phase relations between 2 and 4 kbar. J. Geophys. Res.: Solid Earth. 104(B12), 29453-29470.
  32. Métrich N., Rutherford M.J. (1998) Low-pressure crystallization paths of H2O–saturated basaltic–hawaiitic melts from Mt Etna: Implications for open–system degassing of basaltic volcanoes. Geochim. Cosmochim. Acta. 62(7), 1195-1205.
  33. Moore G., Righter K., Carmichael I.S.E. (1995) The effect of dissolved water on the oxidation state of iron in natural silicate liquids. Contrib. Mineral. Petrol. 120(2), 170-179.
  34. Moore G., Vennemann T., Carmichael I.S.E. (1998) An empirical model for the solubility of H2O in magmas to 3 kilobars. Am. Mineral. 83(1–2), 36-42.
  35. Müntener O., Kelemen P.B., Grove T.L. (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib. Mineral. Petrol. 141(6), 643-658.
  36. Mutch E.J.F., Blundy J.D., Tattitch B.C., Cooper F.J., Brooker R.A. (2016) An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer. Contrib. Mineral. Petrol. 171(10), 1-27.
  37. Newman S., Lowenstern J.B. (2002) VolatileCalc: a silicate melt–H2O–CO2 solution model written in Visual Basic for excel. Comput. Geosci. 28(5), 597-604.
  38. Papale P., Moretti R., Barbato D. (2006) The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. Chem. Geol. 229(1–3), 78-95.
  39. Parat, F., Holtz, F., René, M., Almeev, R. (2010) Experimental constraints on ultrapotassic magmatism from the Bohemian Massif (durbachite series, Czech Republic). Contrib. Mineral. Petrol. 159(3), 331-347.
  40. Parman S.W., Grove T.L., Kelley K.A., Plank T. (2011) Along-arc variations in the pre-eruptive H2O contents of Mariana arc magmas inferred from fractionation paths. J. Petrol. 52(2), 257-278.
  41. Pichavant M., Martel C., Bourdier J.L., Scaillet B. (2002) Physical conditions, structure, and dynamics of a zoned magma chamber: Mount Pelée (Martinique, Lesser Antilles Arc). J. Geophys. Res.: Solid Earth. 107(B5), ECV-1.
  42. Pineau F., Shilobreeva S., Kadik A., Javoy M. (1998) Water solubility and D/H fractionation in the system basaltic andesite–H2O at 1250 C and between 0.5 and 3 kbars. Chem. Geol. 147(1–2), 173-184.
  43. Scaillet B., Evans B.W. (1999) The 15 June 1991 eruption of Mount Pinatubo. I. Phase equilibria and pre-eruption P–T–fO2–fH2O conditions of the dacite magma. J. Petrol. 40(3), 381-411.
  44. Scaillet B., Macdonald R. (2006) Experimental constraints on pre-eruption conditions of pantelleritic magmas: evidence from the Eburru complex, Kenya Rift. Lithos. 91(1–4), 95-108.
  45. Schmidt B.C., Behrens H. (2008) Water solubility in phonolite melts: Influence of melt composition and temperature. Chem. Geol. 256(3–4), 259-268.
  46. Shaw H.R. (1963) Obsidian-H2O viscosities at 1000 and 2000 bars in the temperature range 700° to 900°C. J. Geophys. Res. 68(23), 6337-6343.
  47. Shishkina T.A., Botcharnikov R.E., Holtz F., Almeev R.R., Portnyagin M.V. (2010) Solubility of H2O-and CO2-bearing fluids in tholeiitic basalts at pressures up to 500 MPa. Chem. Geol. 277(1–2), 115-125.
  48. Silver L.A., Ihinger P.D., Stolper E. (1990) The influence of bulk composition on the speciation of water in silicate glasses. Contrib. Mineral. Petrol. 104(2), 142-162.
  49. Sisson T.W., Grove T.L. (1993) Temperatures and H2O contents of low-MgO high-alumina basalts. Contrib. Mineral. Petrol. 113(2), 167-184.
  50. Winther K.T., Newton R.C. (1991) Experimental melting of hydrous low-K tholeiite: evidence on the origin of Archaean cratons. Bull. Geol. Soc. Den. 39, 213-228.
  51. Yamashita S. (1999) Experimental study of the effect of temperature on water solubility in natural rhyolite melt to 100 MPa. J. Petrol. 40(10), 1497-1507.
  52. Zhang Y., Xu Z., Zhu M., Wang H. (2007) Silicate melt properties and volcanic eruptions. Rev. Geophys. 45(4).

© Я.Ю. Гнучев, Д.А. Бычков, Е.В. Коптев-Дворников, 2023