Study of the Effects of Different Factors on Crystal Growth from Solution: Data of Atomic Force Microscopy

封面

如何引用文章

全文:

详细

In order to crystallographically reconstruct the growth processes of mineral crystals and to establish fundamental patterns in crystal growth at a nanoscale, the effects of various factors on the characteristics of layer-by-layer crystal growth from solution were modeled using atomic force microscopy (AFM). In an experiment on growth in the area of a scratch, it was shown, using an original method of AFM data processing, that the average rate diagrams indicate a situation of a self-organization process: stable auto-oscillations in the growth rate. Comparison of the results with data on the growth of similar uninfluenced hillocks leads to the conclusion that giant fluctuations and the phenomenon of simultaneous growth and dissolution in local areas are caused by nanoindentation, when the strain from artificially formed defects strongly influences the evolution of the surface. In an AFM experiment on the trapping of foreign solid particles by a growing crystal at the nanoscale, the process of formation of a screw dislocation initiated by a foreign inclusion particle was registered. To theoretically explain the process, a three-stage mechanism is proposed that involves strain relaxation around the inclusion particle by the formation of one or more dislocations prior to the sealing of the inclusion during the first stage, the attachment of edge dislocations to them during the time of overgrowing in the second stage, and the development of a resulting dislocation after the particle has been completely sealed during the third stage. In studying growth in a flow cell, the mechanism of nanoscale reorientation of the growth hillock in the direction of the flow was established at a nanoscale, and the phenomenon of a change in the dominant hillock was registered. The resulting dissolution patterns in the channel are a clear demonstration of Curie’s Symmetry Principle, according to which only those symmetry elements of a body in an environment can be preserved that are shared by the body and the environment.

全文:

ВВЕДЕНИЕ

Природные геохимические системы, в которых происходит рост кристаллов, сложны для моделирования из-за множества компонентов, которые необходимо воссоздать, как химических, физических, так и временных. К физическим факторам относятся влияние на рост и растворение царапин, растрескивания, вибраций, набегающих потоков, контактирование индивидов друг с другом и с примесями, рост в стесненных условиях, рост регенерационных поверхностей и другие. И если живые картины таких процессов в оптическом диапазоне хоть в какой-то мере известны исследователям, то в масштабе элементарной ячейки проследить каждый такой процесс поэтапно все еще представляется сложной и актуальной задачей. С помощью атомно-силовой микроскопии (АСМ) можно изучить влияние каждого из перечисленных факторов отдельно и на очень высоком размерном уровне, а также сравнить результаты с «эталоном». В качестве эталона выступает эксперимент с тем же кристаллом, проведенный в идентичных условиях, но без какого-либо воздействия. Производится сравнение идентичных ступеней и холмиков с одинаковой стартовой скоростью. Обнаруженные в таком случае в эксперименте с воздействием необычные явления или сдвиг кинетических характеристик могут быть объяснены влиянием этого специального фактора. Следующим шагом должен стать анализ совместного влияния нескольких условий, как это свойственно природным системам.

Попытки моделирования с помощью АСМ специфических факторов, влияющих на рост кристаллов, предпринимались с самого момента создания АСМ. Изучалась роль химических примесей (Elhadj et al., 2008; Land et al., 1999; Lee-Thorp et al., 2017; Nakada et al., 1999; Poornachary et al., 2008; Capellades et al., 2022; Lucre`ce et al., 2019; Zhong et al., 2018), влияние бактерий (Davis et al., 2007), пластических деформаций (Lutjes et al., 2021), царапин на ростовой поверхности (Elhadj et al., 2008; Zareeipolgardani et al., 2019) и др. Результаты, полученные на модельных кристаллах, необходимо сравнивать с данными ex situ изучения поверхностей природных кристаллов, на которых когда-то протекали аналогичные процессы. Нами также проводились такие работы (Сокерина, Пискунова, 2011; Сокерина и др., 2013; Silaev et al., 2013; Пискунова и др., 2018). Так, например, была обнаружена различная скульптура пар кубических граней метакристаллов пирита с Приполярного Урала (Трейвус и др., 2011) и из северной Испании (Трейвус и др., 2011). На одной паре граней таких пиритов присутствовали лишь два-три плоских холмика, а на другой имелось множество винтовых холмиков миллиметровой высоты с крутыми боками. Изучение нами холмиков с помощью АСМ выявило существенные несовпадения их тонкого рельефа для разных пар граней: в одном случае обнаружены полигональные спирали и ступени с относительно ровным фронтом, в другом — закругленная изрезанная форма ступеней и свидетельства растворения и захвата твердых включений. Это помогло сделать вывод о неравновесной адсорбции примесей разными парами граней, вследствие существенно разного количества выходящих на каждую грань дислокаций, что, в свою очередь, из-за обнаруженных плоскостей скольжения было объяснено воздействием на кристаллы направленного давления. Примерами дефект-стимулированного растворения поверхности, в том числе на микрометрового размера твердых примесях, являются изображения (рис. 1а), полученные нами на поверхности кристаллов алабандина месторождения Высокогорное (Якутия) (Silaev et al., 2013), а также на гранях пирита хребта Сабля (Приполярный Урал), опубликованные в работе (Пискунова и др., 2016).

 

Рис. 1. (а) — следы растворения на грани (111) алабандина (м. Высокогорное, Якутия), стимулированного дефектами, в том числе твердыми включениями. (б) — АСМ-рельеф стенки газово-жидкого пузырька (край показан стрелками) на полированном разрезе высокотемпературного кварца (рудопроявление Синильга, Приполярный Урал). Внутри видны микрокристаллы предположительно эпигенетических включений. Масштабные линейки — 5 мкм.

 

Присущие граням природных кристаллов следы растворения, сколы, потертости и пленки окисления являются значительными помехами при построении рельефа на том тонком уровне, который дает АСМ. Этих недостатков почти полностью лишены внутренние стенки газово-жидких включений, которые сохранили большую часть драгоценной информации (рис. 1б). В зависимости от глубины расположения включения, эта информация может касаться разных этапов роста кристалла, а не только финального, как в случае с ростовой гранью. Нами было проведено изучение микро- и наноморфологических особенностей рельефа стенок включений в кристаллах аквамарина (Шерловая гора, Забайкалье), кварца (месторождение Желанное, Синильга, Приполярный Урал), фенакита (Уральские изумрудные копи), аметиста (месторождение Хасаварка, Приполярный Урал), берилла и шерла (Шерловая гора, Забайкалье), а также рубеллита (гора Манхай, Забайкалье). У простых тригональных из перечисленных силикатов на внутренних стенках включений были обнаружены многочисленные спиральные холмики. Характерные холмикам плоские вершины, неразвитое подножье и крутые бока (рис. 2) свидетельствуют об очень малых пересыщениях, значительном влиянии ангстремного размера примесей на протяжении длительного времени и говорит о том, что они сформировались после герметизации включения из захваченного внутрь него раствора.

 

Рис. 2. АСМ-изображение спиральных холмиков на внутренних стенках газово-жидких включений кристаллов: (а) — фенакита, (б) — аметиста, (в) — кварца.

 

АСМ-исследование стенок включений силикатных кристаллов кольцевой структуры не обнаружило холмиков: на всех масштабах выявлено глобулярное строение поверхности. Это послужило дополнительным аргументом в пользу гипотезы (Пискунова, Кряжев, 2021) о том, что раствор, захваченный в процессе роста силикатов кольцевой структуры, имел достаточно высокую степень полимеризации кремнекислоты.

В настоящей работе представлены результаты изучения наноморфологических особенностей отклика растущей и растворяющейся поверхности кристалла на различные дестабилизирующие воздействия, аналогичные тем, которые протекают при росте кристаллов минералов. В первую очередь, рассмотрено влияние механического воздействия небольшой силы на растущую и растворяющуюся поверхность. Кроме этого, изучены кинетические и динамические характеристики послойного роста поверхности в области внедрения частиц твердых примесей. Третья часть работы касается морфологических характеристик поверхности кристалла в направленном потоке питающего и недосыщенного растворов. В качестве природной аналогии для этой экспериментальной задачи можно привести АСМ-изображение поверхности кристалла топаза (месторождение Шерловогорское, Забайкалье) которое демонстрирует микрорельеф, свидетельствующий о растворении в направленном потоке флюида (рис. 3). Край полигональной ямки на грани призмы (120), который встречает поток (направление [110]), изрезан гораздо сильнее, чем тот ее край, который находится с «подветренной» стороны (направление [010]).

 

Рис. 3. Рельеф растворения на грани (120) топаза (месторождение Шерловогорское, Забайкалье), предположительное направление потока флюида показано стрелкой внизу. Масштабный отрезок — 10 мкм.

 

МЕТОДИКА

Приборы

Исследования проводились на атомно-силовом микроскопе Ntegra Prima (НТ-МДТ, Россия, оператор В. А. Радаев), в контактном режиме, с использованием стандартных кремниевых кантилеверов (NanoProbe) с радиусом наконечника 5 нм. По данным на соответствующих АСМ-дисплеях, относительная влажность в помещении в эксперименте с примесями составляла 27.2 %, в течение двух часов эксперимента с царапинами — 26.2 %, эксперимента без воздействия — 25 %, проточных экспериментах — 34–36 %, Температура во первых двух экспериментах поддерживалась равной 24 °C, в эксперименте без воздействия — 25 °C, в проточных экспериментах — 26 и 27 °C. Эксперименты с проточной ячейкой проведены на атомно-силовом микроскопе ARIS3500 (Burleigh Instruments, США, оператор В. А. Радаев), с использованием кремниевых кантилеверов (Burleigh Instruments) жесткостью 0.1 Н/м с радиусом закругления кончика 10–15 нм.

Материалы

Более 10 лет назад в практику ростовых экспериментов в качестве модельного кристалла был введен гидроксиметилхиноксилиндиоксид C10H10N2O4 (Пискунова, 2011). Диоксидин кристаллизуется, образуя таблитчатые кристаллы, в моноклинной сингонии: a = 8.795, b = 15.745, c = 7.994 Å, β = 102.29°, V = 1081.58 Å3 (по нашим данным — дифрактометр Shimadzu XRD-6000, излучение — CuKα, внутренний стандарт — Si, оператор Ю. С. Симакова). Концентрация насыщения диоксидина для температуры 24 °C составляет примерно 23 мг/мл, его раствор прозрачен, что важно для прохождения лазерного луча. Значительный размер молекулы данного кристалла позволяет наблюдать с помощью АСМ интересные явления послойного роста при условии, что слои на его поверхности являются мономолекулярными. Диоксидин производится достаточно чистым, его растворы были протестированы на масс-спектрометре с индуктивно-связанной плазмой Agilent 7700x (оператор Г. В. Игнатьев). Исследовались три типа растворов: аптечный раствор из ампулы, дважды деионизированная вода с растворенным в ней кристаллом и обедненный аптечный раствор, оставшийся после извлечения выросшего кристалла. Концентрации рассчитывались по калибровочным кривым, построенным с помощью стандартных растворов High Purity Standards с концентрацией 10 мг/л. Результаты показали (таблица 1), что все растворы диоксидина содержат следовые концентрации примесей, которые при кристаллизации не входили в кристалл.

 

Таблица1. Концентрация примесей в растворе диоксидина

Элементы с концентрацией выше нулевой

Концентрация (мг/л)

Дважды деионизированная вода с растворенным в ней кристаллом

Раствор после извлечения выращенного кристалла

Аптечный раствор, новая ампула

7 Li

0.000

0.000

0.007

9 Be

0.001

0.000

0.000

11 B

нпо1

0.108

0.091

24 Mg

нпо

0.001

0.001

27 Al

нпо

0.072

0.070

28 Si

0.118

0.209

0.168

39 K

нпо

0.113

нпо

44 Ca

0.080

0.236

0.218

45 Se

0.001

0.000

0.001

51 V

0.006

0.004

0.007

52 Cr

0.019

0.014

0.023

60 Ni

0.007

0.007

0.00

63 Cu

нпо

0.007

нпо

66 Zn

0.045

0.057

0.034

75 As

нпо

0.001

нпо

78 Se

нпо

0.001

нпо

88 Sr

нпо

0.004

0.002

137 Ba

0.002

0.025

0.016

209 Bi

0.000

0.167

0.000

Примечания. нпо — ниже предела обнаружения.

 

Так как кластеры в растворе также могут выступать в качестве примесей, блокируя изломы на ступенях, необходимо было установить способность растворов диоксидина образовывать кластеры. С помощью спектроскопии комбинационного рассеяния света (модификация спектрометра ДФС-24 для комбинационного рассеяния (Ломо, Россия, оператор А. А. Кряжев)) было установлено, что кластеры в растворах диоксидина не образуются. Склейка молекул даже в димеры уменьшает частоту колебаний, что отражается в сдвиге рамановских пиков. Также должно происходить уширение пика (О-Н) вследствие высвобождения (О-Н)-групп при объединении вещества в кластеры (Rusli et al., 1989). Установлено, что все пики диоксидина не испытывали уширений и сдвигов при переходе раствора от недосыщения к насыщению.

Часть данных получена нами на кристаллах хлорида натрия (NaCl) и дигидрофосфата калия (KDP), растворы которых имели общее содержание примесей в интервале от 0.001 до 0.05 массовых процентов.

Методика наноиндентирования и сила воздействия

Кристаллы выращивались непосредственно в ячейке с раствором, часть кристаллов росла без всякого воздействия, а на некоторые иглой АСМ наносилась царапина. Для этого, сначала, без выхода из контакта, уменьшался размер окна сканирования, к примеру, с 10 × 10 до 0.5 × 0.5 мкм2. Затем получившийся малый квадрат передвигался по траектории будущей царапины. При наталкивании иглы на высокие участки (увеличении силы взаимодействия игла-образец) из-за включенной обратной связи, прибор обычно дает команду пьезосканеру отвести образец дальше от иглы. Это необходимо для поддержания постоянного значения силы и защиты образца и иглы от повреждения. Для достижения обратной цели — намеренного повреждения — функция обратной связи временно отключалась. Для вершины спирального холмика нами было сделано всего одно передвижение иглы сверху вниз справа и одно сверху вниз слева (рис. 5б). Для ровного участка слоистого роста справа игла двигалась снизу вверх, слева — сверху вниз (рис. 4б). Время принудительного ведения иглы слева и справа примерно одинаково. На ровном участке почти без ступеней в равновесном растворе нами движением против часовой стрелки проведены очертания буквы «О» (рис. 5а). Во всех случаях описанные манипуляции привели к формированию глубоких канав-царапин микрометровой ширины. Связано это с формированием дефектов, на которых даже в слегка пересыщенном растворе происходит локальное растворение (Heiman, 1975). На левой стороне буквы «О» не возникло царапины, так игла двигалась по направлению движения немногочисленных ступеней, не встречая сопротивления и поэтому практически не создала дефектов (рис. 5а).

 

Рис. 4. Игла АСМ, воздействуя с малой силой по нормали к поверхности, вызывает возникновение дефектов типа 1 (а) и появляется царапина (показана стрелками на среднем снимке (б)). В нижней части рисунка проекция структуры диоксидина на грань (100): сдвиговые напряжения от движения иглы вдоль поверхности в некоторой области I, ответственны за возникновение дефектов типа 2 (краевые дислокации и междоузельные дефекты) в области II на значительном расстоянии от места воздействия, что приводит к потере морфологической устойчивости на большом участке ((б), нижний снимок). Масштабные отрезки — 2 мкм.

 

Рис. 5. (а) — последовательные снимки растворения на царапине в слегка недосыщенном растворе. На снимках указано время от начала эксперимента. Масштабные отрезки — 5 мкм. (б) — послойный рост поверхности до и после нанесения царапин на вершине дислокационного холмика. Высота ступеней равна диаметру молекулы диоксидина. На снимках указано время от начала экспериментов. Масштабные отрезки — 2 мкм.

 

Сила давления в момент соскока со ступени оценена нами по характеристикам из паспорта кантилевера и параметрам прибора в момент калибровки с учетом отключенной обратной связи и составляла ~10–7 Н. Далее мы покажем, что важно не столько давление зонда по нормали, которое создает дефекты типа 1 на рисунке 4 (вакансии и винтовые дислокации), сколько сдвиговое напряжение, которое он создает при направленном движении, создавая дефекты типа 2 (краевые дислокации и междоузельные атомы). Силы вертикального давления иглы в данном случае не хватает для создания винтовой дислокации, но возникают точечные дефекты, их повышенный химический потенциал инициирует локальное растворение и образуется «царапина». Боковые движения иглы стимулируют возникновение краевых дислокаций на некотором расстоянии от места контакта, что в дальнейшем обуславливает потерю морфологической устойчивости поверхности на большой площади (рис. 4б, нижний снимок). По нашим оценкам, сила, с которой игла давит на торец встречной ступени, взбираясь на нее, почти в 4 раза больше силы влияния иглы, соскакивающей со ступени. Количество препятствующих ступеней очень важно для образования царапины, так как игла, упираясь в торцы ступеней, инициирует новые дефекты.

Методика внедрения твердых примесей

Частицы, используемые в качестве механической примеси, были получены путем измельчения в порошок кристаллов черного турмалина (Шерловая гора, Забайкалье, Россия). После того как все соли из жидких включений были вымыты в ультразвуковой ванне, вещество было идентифицировано как минеральный вид шерл NaFe3(Al, Fe)6Si6O18(BO3)3(OH)4 (элементный анализ проводился энергодисперсионным детектором X–Max (площадь 50 мм2) (Oxford Diffraction) сканирующего электронного микроскопа Tescan Vega 3 (оператор Кряжев А. А.). Частицы турмалина не имели определенной формы, их размер варьировался от 0.5 до 5 мкм. Выбор примесного вещества определялся желанием достичь минимальной адгезии к вмещающему кристаллу. Его частицы должны хорошо смачиваться водой, быть однородными по размеру и составу, сохранять черный цвет и иметь достаточную твердость и стеклянный блеск. Все перечисленное требовалось на всех этапах эксперимента, в том числе для идентификации примеси на АСМ-изображении, на котором одинаково отображаются детали рельефа разного элементного состава.

Выращивание кристаллов непосредственно в ячейке АСМ технически сложно совместить с контролируемым встраиванием примесей: незакрепленные частицы прибором не регистрируются, они перемещаются иглой и часто вовсе выводятся ею из зоны наблюдения. Врастать в кристалл за короткое время такие частицы не успевают из-за низкого насыщения, характерного для съемок в АСМ (для наблюдения хорошо регистрируемого роста в течение нескольких часов стартовое пересыщение диоксидина должно составлять 0.8–1.3 %). Ни один из способов прижимания инородной частицы к растущей поверхности не привел к желаемому результату. Главный вывод из методических экспериментов заключался в том, что инородная частица для наблюдения должна быть наполовину вросшей (рис. 7а). При этом возвышающаяся ее часть не должна быть слишком высокой: на АСМ-изображении деталь высотой даже 1 мкм предстает засвеченной, в то время как тонкие детали вокруг нее выглядят полностью черными.

Таким образом, кристаллы для нашего эксперимента предварительно выращивались в растворе в присутствии твердых инородных частиц (врезка на рис. 7б). После того как кристаллы достигали размера около 500 мкм, их сушили и подклеивали в ячейку АСМ. После этого в нее заливался свежий раствор диоксидина, находилась область на поверхности с внедренными частицами и начиналось наблюдение.

Методика проточных экспериментов

Скорость потока в ростовых экспериментах с помощью АСМ обычно подбирают так, чтобы он не влиял на поверхностную кинетику, а просто выступал гарантом постоянной подпитки веществом кристаллизационной системы (Teng et al., 1998; Рашкович и др., 2003). Нашей задачей было изучить именно влияние потока на микрорельеф растущей или растворяющейся грани кристалла. Поэтому в результате методических экспериментов была подобрана достаточно высокая для подобных экспериментов скорость, которая в результате вызвала перестройку поверхности, но позволяла при этом получать корректные изображения. Для выполнения поставленной задачи нами была специально изготовлена ячейка для АСМ ARIS3500. В качестве вводящих и выводящих трубок использовались стальные медицинские иглы — внешним диаметром 0.6 мм, к которым присоединялись гибкие шланги. Скорость течения питающего раствора в проточной ячейке поддерживалась постоянной 0.8 см/с с точностью до 0.2 см/с, для этого соблюдался постоянный уровень столба жидкости в кюветах со свежим и отработанным растворами. Скорость потока недосыщенного раствора KDP была равной 0.6 см/с. Пересыщение исходного раствора при изучении роста KDP в потоке составляло почти 1.4 %, NaCl — около 2.5 %. В экспериментах по растворению в потоке кристаллов KDP недосыщение составляло чуть меньше 2 %.

Способ и точность снятия данных с АСМ-изображений

Суть метода состоит в тщательном сборе координат множества точек на каждой ступени в области сканирования в каждый момент времени и дальнейшей обработке этих данных. На каждое АСМ-изображение накладывалась специальная сетка, основные линии которой (прямые или меридиональные в зависимости от формы ступеней) должны быть перпендикулярны фронту движения ступеней. Затем снимались координаты точек на пересечении меридианов сетки с краями ступеней. Для каждой пары снимков, промежуток времени между которыми составлял 4.5 минуты, записывалось более полутора тысяч значений координат. В эксперименте с царапинами координаты снимались через каждые 55 нм. Для монитора 1920 × 1680 минимальное расстояние, которое различит сенсор мыши (CPI 400), составляет 0.0625 мм. Для размещенного на экране АСМ-изображения размером 15 × 15 мкм2 (эксперимент с царапиной) этот шаг мыши соответствовал 6 нм. Для холмика, который рос без какого-либо воздействия, точность снятия данных составила 2 нм. В эксперименте с примесями размер области сканирования достаточно «большой» — 50 × 50 мкм2, и данные снимались через каждые 500 нм. Поэтому и точность в латеральной плоскости была грубая — 60 нм.

Точность измерений в нормальном направлении не в пример выше — 0.01 нм; таким образом, минимальная измеренная высота ступеньки на диоксидине составила 8 ± 0.1 Å, что равно одному из диаметров молекулы диоксидина.

На основе координатных данных рассчитывались тангенциальные скорости, от 500 до 1100 значений для каждой пары изображений. Для компенсации изменений поверхности в нижней части области сканирования за время, пока сканируется верхняя часть, в формулу скорости для i-й точки была включена временная поправка, зависящая от у-координаты. Затем для каждого момента времени строились эмпирические распределения (вероятности) тангенциальных скоростей ступеней. Каждое распределение методом наименьших квадратов аппроксимировалось кривой логнормального распределения, средние тангенциальные скорости определялись как значения математического ожидания в каждый момент времени. Их флуктуации представляют собой среднеквадратичное отклонение в статистическом смысле. Определенные таким образом для каждой пары снимков значения средней скорости последовательно располагались на временном графике, а значения флуктуаций откладывались вверх-вниз в каждой точке, как доверительный интервал. Затем, таким же образом, рассчитывались расстояния между ступенями (ширина террас) для каждой точки и в каждый момент времени, а также их флуктуации. В совокупности все вышеописанное применялось для получения высокоточных значений нормальной скорости.

Флуктуации по своему смыслу являются малой добавкой к измеряемой или рассчитываемой величине, однако, как будет показано далее, в наноразмерном масштабе они играют значительную роль. Строгое постоянство нормальной скорости и стремления ее флуктуаций к нулю, свидетельствующие о приближении системы к состоянию стационарного роста, не наблюдались нами ни в одном из экспериментов. Фактически мы считаем невозможным зарегистрировать с помощью АСМ абсолютный стационарный рост, так как сканирующий блок АСМ постоянно перемешивает пограничный диффузионный слой кристалла, препятствуя стабилизации градиента концентрации. Тем не менее, с помощью описываемого метода можно установить направленность процесса — тенденцию к стационарному росту или, например, активизацию процессов самоорганизации.

РЕЗУЛЬТАТЫ

Растворение на царапине

При начертании буквы «О» на почти гладкой поверхности с одиночными ступенями, левая ее часть не проявилась в виде царапины, так как игла практически не встречала сопротивления (рис. 5а). До воздействия мономолекулярные ступени на данном участке растворялись со скоростью до 0.6 нм/с. Скорость вычислялась по изменению координат с привязкой к реперным объектам — точкам выхода дислокаций (мелкие черные отверстия на первом снимке рис. 5а). Этим точкам присущ повышенный химический потенциал (благодаря энергии деформации вдоль линии дислокации), из-за которого вещество в эти точки не присоединяется во время роста. При растворении, наоборот, отрыв вещества в области выхода дислокационных каналов происходит в первую очередь. Но растворение на этих выходах дислокаций, наблюдаемое до нанесения царапины и после (черные ямки слева и справа от центра на 4-м, рис. 5а), не может сравниться с тем интенсивным растворением, которое было инициировано иглой. Как отмечалось в Методике, она вызвала возникновение краевых дислокаций далеко от места ее прямого воздействия, поэтому растворение со временем захватило значительные площади (рис. 5а).

Рост на царапине

На вершине дислокационного холмика царапины наносились в одном направлении (рис. 5б). Из-за ориентации холмика, игла слева двигалась по ходу движения ступеней, а справа — против хода движения ступеней. Царапины быстро заросли, но наблюдение за поведением ступеней на вершине и вдали от вершины холмика, показало, что контуры ступеней искривились даже там, где не было прямого воздействия. Удивительным оказалось то, что соседние участки одной и той же ступени могли расти и растворяться одновременно. В наибольшей степени сказанное относится к правой части холмика.

На рисунке 6а показаны скорости и флуктуации в эксперименте без какого-либо воздействия, с которым сравнивались результаты эксперимента с царапинами (рис. 6б) с рисунка 5б. Анализ скоростей выявил гигантские флуктуации, которыми объясняется локальное растворение во время роста после царапины (рис. 6б). Обнаруженные устойчивые колебания скорости, а также значительное усиление флуктуаций свидетельствуют о самоорганизации системы (Пригожин, Кондепуди, 2002) — автоколебательном процессе. Вывод об активизации процессов самоорганизации по результатам расчетов относится к обеим сторонам холмика, несмотря на то, что слева контуры ступеней визуально ровнее. Сравнение полученных данных с экспериментами без какого-либо воздействия говорит о том, что именно специальное механическое воздействие спровоцировало флуктуационно-диссипативную перестройку поверхности.

 

Рис. 6. Результат статистической обработки данных АСМ: (а) — скорость тангенциального роста и ее флуктуации (показаны как доверительный интервал) для холмика в эксперименте без воздействия; (б) — гигантские флуктуации скорости в эксперименте с царапинами; (в) — колебательный характер средней тангенциальной скорости на левой и на правой царапинах. Каждая точка графиков построена на основе обработки около 500–1100 значений скорости.

 

Внедрение твердой примеси

В эксперименте по росту поверхности диоксидина с внедренными частицами примеси был поэтапно зарегистрирован инициированный примесью процесс формирования винтовой дислокации. Наши прямые наблюдения такого процесса в растворе показали, что из более чем тридцати внедрившихся на участке 50 × 50 мкм частиц, дислокацию вызвала только одна (рис. 7а). Установлено, что только для одной частицы выполнилось условие, когда дислокации возникли еще до полной герметизации полости включения. Нами показано, что внедрение примесей не повлияло на характеристики послойного роста; их флуктуации, как и положено, представляли собой небольшое отклонение от основного значения (рис. 7б).

 

Рис. 7. (а) — АСМ-изображения процесса врастания инородных частиц в грань (100) диоксидина. На каждом отмечено время, прошедшее от первого снимка. Видно, что твердые примеси полностью не зарастают, над ними долгое время сохраняются отверстия. Через два часа точно на координате одной из частиц возник спиральный холмик со ступенями высотой 0.8 нм. Масштабные отрезки — 5 мкм. (б) — скорости и их флуктуации в эксперименте с примесями. Каждая точка графиков является результатом обработки около 900 значений скорости. На врезке — оптическое изображение кристаллов диоксидина с примесью шерла в проходящем свете.

 

Морфологическая устойчивость поверхности сохранялась как визуально, так и по данным расчетов. В данном эксперименте впервые поэтапно зарегистрировано явление прорастания дислокации, также вокруг отверстий над твердыми включениями еще до того, как они заросли, были обнаружены ростовые аналоги дислокационного источника Франка–Рида. Именно над этими включениями после герметизации сформировался винтовой дислокационный холмик.

Полученные результаты дали возможность расширить существующее описание механизма формирования дислокации на включении, предложенное Черновым (Чернов и др., 1980). Образование на первом этапе одной или нескольких (скорее всего, пары) дислокаций в непосредственной близости от полости с частицей еще до ее герметизации, присоединение к ним краевых нарушений в момент закрывания полости (II этап), гарантирует образование результирующей дислокации после герметизации (III этап). Нами доказано, что сам факт герметизации включения не обязательно заканчивается возникновением винтовой дислокации. Возможно, тем, что не каждое включение вызывает критические напряжения еще до полного зарастания, объясняется парадоксально слабая дефектность ростовой поверхности при значительном количестве захваченных кристаллом твердых примесей.

Рост и растворение в потоке раствора

В эксперименте по росту поверхности NaCl в непрерывном протоке раствора, зарегистрировано явление переориентации холмиков роста по направлению потока (рис. 8а). Это согласуется с теоретическим механизмом (Чернов, 1975), согласно которому максимум пересыщения приходится на гребни сформировавшихся макроступеней, а за гребнями по направлению потока образуются застойные зоны. За время эксперимента высота основного холмика на рисунке 8а увеличилась почти в четыре раза, а рост у его подножья практически прекратился (скорость 2.7 нм/с в начале и 0.45 нм/с в конце 10-й минуты наблюдения). Известно, что в диффузионном режиме поверхность неустойчива по отношению к образованию волн плотности элементарных ступеней и к последующему превращению их в макроступени. Кинетический коэффициент поверхности β — периодическая функция координаты x (рис. 8б). В неподвижном растворе пересыщение на поверхности σs также изменяется периодически: оно максимально там, где кинетический коэффициент поверхности мал, а сама поверхность достаточно далеко выдвинута вглубь раствора. Этим условиям удовлетворяет точка между 1 и 2 (рис. 8б). Если раствор движется, то периодичность сохранится, но максимумы будут снесены вправо, если он движется вправо, или влево, если раствор движется влево. Т.е. при течении направленном по ходу ступеней, более обогащенный раствор попадает на гребни 1–2 и 5–6, что ведет к дальнейшему увеличению амплитуды возмущений. Если раствор течет против хода ступеней, то на гребни он попадает обедненным прохождением через участки с наибольшей плотностью 2–4 и 6–7, то есть участки с наибольшим кинетическим коэффициентом. В результате случайно возникшее возмущение исчезнет, и холмик останется плоским. Таким образом, в эксперименте (рис. 8а) мы наблюдали пример, когда раствор перемещался по ходу движения ступеней, а амплитуда возмущения увеличивалась со временем.

 

Рис. 8. (а) — поверхность хлорида натрия, растущего в потоке раствора (направление потока показано стрелкой, на каждом изображении отмечено время, прошедшее от первого снимка, масштабные отрезки — 2 мкм); (б) — устойчивость и неустойчивость грани в потоке по Чернову.

 

В другом эксперименте пересыщенный раствор NaCl двигался, наоборот, против хода ступеней. В этом случае на торцы ступеней приходится максимальное пересыщение, и присоединение вещества происходит в первую очередь на них. На рисунке 8а угол θ характеризует локальное отклонение ориентации от сингулярной грани, R — скорость роста поверхности вдоль нормали к этой грани, V — скорость роста вдоль нормали к конкретной ростовой поверхности. При набегании раствора на такой склон, угол θ постепенно должен уменьшаться, что и наблюдалось в нашем эксперименте: угол наклона холмиков за 7 минут уменьшился от 51° до 29°. Ступени двигались навстречу потоку вначале эксперимента со скоростью 34.4 нм/с, а в конце их скорость увеличилась до 137 нм/с.

В эксперименте по росту грани (101) дигидрофосфата калия (KDP) зарегистрировано явление смены доминирующего холмика в потоке раствора (рис. 9). По сути, механизм схож с представленным на рисунке 8б. Верхний холмик (рис. 9а, справа) высотой 7.5 нм вначале рос со скоростью 4 нм/с, через 12 минут его скорость снизилась до 0.016 нм/с, тогда как выше по потоку выделился холмик, нормальная скорость которого к концу наблюдения почти в 7 раз превысила скорость верхнего холмика. На рисунке 9а приведен кинетический коэффициент ступеней, рассчитанный по формулам из работы (Асхабов, Маркова, 1996).

 

Рис. 9. Смена доминирующего холмика роста на грани (101) дигидрофосфата калия в направленном потоке раствора. Направление потока показано стрелкой. (а) — расчеты кинетического коэффициента β для выделенного направления в начальный и конечный моменты наблюдения, (б) — увеличение скорости роста лидирующего холмика с 2 до 6 нм/с.

 

Растворение грани (100) кристалла KDP в потоке раствора показано на рис. 10. Интенсивное растворение напоминает химическое полирование, когда сглаживаются выступающие детали, но практически не затрагиваются плоские участки рельефа. Видно, что наиболее крупные холмики роста имеют преимущество также и при растворении (рис. 10а). Сначала большого различия в скоростях растворения правого и левого пирамидальных холмиков не наблюдалось. Скорости растворения трех точек на правой пирамидке составляли 4.4; 13.7 и 14.8 нм/с. Аналогичные точки на левой пирамидке растворялись со скоростью 9.7; 10.7 и 13.8 нм/с. По прошествии нескольких минут правая пирамидка, которая вначале была больше, стала растворяться значительно быстрее. Скорости ее точек определены равными 6.5; 3 и 5 нм/с, тогда как на левой пирамидке те же точки растворяются со скоростью 3; 2 и 0.8 нм/с.

 

Рис. 10. АСМ-изображения растворения грани (100) кристалла KDP в потоке раствора. (а) — самый крупный ростовой холмик, наиболее активен и при растворении, (б) — выклинивание микрокристаллов в потоке. Направление потока показано стрелкой. На каждом изображении отмечено время, прошедшее от первого снимка. Масштабные отрезки — 3 мкм.

 

Растворение кристалликов микрометрового размера в потоке напоминает выклинивание скал в речных теснинах: участки рельефа, обращенные к потоку, становятся все более и более узкими. На рисунке 10б вершина, встречающая поток (отмечена кружком), растворяется со скоростью 39 нм/с, тогда как другие точки, расположенные дальше по потоку, имеют скорость всего лишь до 10 нм/с. Таким образом подтверждается принцип преимущества сохранения тех участков рельефа, симметрия которых совпадает с симметрией окружающей обстановки в данный момент.

ЗАКЛЮЧЕНИЕ

Для микро- и наномасштаба сегодня атомно-силовой микроскоп является единственным инструментом, позволяющим вести прямые наблюдения за поверхностью кристалла в растворе. В АСМ не существует сколь-нибудь стандартизированных методик, моделирующих влияние на рост кристаллов посторонних факторов. Нами были разработаны экспериментальные методики для определения влияния на поверхностные процессы роста и растворения: 1) кратковременного механического воздействия; 2) крупных частиц примеси; 3) направленного потока раствора.

В эксперименте по росту в области царапины показано, что диаграммы средней скорости представляют собой картину процесса самоорганизации — устойчивых автоколебаний скорости. Сравнение результатов с данными по росту аналогичных холмиков без какого-либо воздействия, позволяют сделать вывод о том, что гигантские флуктуации и явление одновременного роста и растворения на локальных участках вызваны именно наноиндентированием, когда напряжение от специально созданных дефектов сильно повлияло на характеристики послойного роста.

В АСМ-эксперименте по захвату твердых инородных частиц растущим кристаллом на наноуровне зарегистрирован процесс формирования винтовой дислокации, инициированный частицей примеси. Для теоретического объяснения процесса предложен трехстадийный механизм, который заключается в релаксации напряжений вокруг примесной частицы путем формирования одной или нескольких дислокаций еще до ее зарастания на первой стадии, присоединения к ним краевых дислокаций в момент зарастания на второй стадии и появлением результирующей дислокации после полного зарастания частицы на третьей стадии. Механизм позволяет объяснить парадоксально слабую дефектность ростовой поверхности при значительном количестве захваченных кристаллом твердых примесей.

Наблюдения за ростом поверхности кристалла в потоке раствора позволило поэтапно зарегистрировать процесс переориентирования холмика роста по направлению потока, а также явление смены доминирующего холмика. Полученные картины растворения в потоке являются демонстрацией принципа Кюри, утверждающего преимущество тех элементов симметрии объекта, которые совпадают с симметрией среды в данный момент. Феноменологическое описание с помощью АСМ наномасштабных процессов роста и растворения в потоке раствора согласуется с известными из литературы примерами схожих микро- и макромасштабных процессов.

Дальнейшими задачами станет изучение с помощью АСМ влияния на поверхностные процессы колебаний, роста в стесненных условиях, роста в области трещин, на границе двойниковых срастаний и др. Помимо установления новых теоретических механизмов их влияния на рост кристаллов на наноуровне и расшифровки процессов природного кристалообразования, такое изучение может способствовать эффективному решению некоторых проблем, стоящих перед ростовой промышленностью сегодня.

Автор благодарит за помощь в проведении съемок на атомно-силовом микроскопе инженера В. А. Радаева, а за сотрудничество и предоставленные кристаллы минералов — своих соавторов, упомянутых в списке литературы. За анализ работы, важные замечания и комментарии автор выражает искреннюю благодарность анонимным рецензентам и академику С. В. Кривовичеву, а также научному редактору статьи Е. А. Волковой.

Исследования проводились на оборудовании ЦКП «Геонаука» (Сыктывкар).

По результатам АСМ-экспериментов изготовлены видеофильмы в формате MPEG, демонстрирующие рост кристаллов диоксидина в области царапин, нанесенных на его поверхность, в присутствии твердых примесей, рост в направленном потоке, растворение в области царапины и рост без всяких воздействий.

Фильмы размещены по следующей ссылке, а также доступны с помощью QR-кода: https://geo.komisc.ru/divisions/laboratory/experimental-mineralogy-laboratory?view=article&id=759: piskunova&catid=189: experimental-mineralogy-laboratory.

×

作者简介

N. Piskunova

Yushkin Institute of Geology Komi Scientific Center, Ural Branch, RAS

编辑信件的主要联系方式.
Email: piskunova@geo.komisc.ru
俄罗斯联邦, 167982 Syktyvkar, 54, Pervomayskaya St.

参考

  1. Асхабов А. М., Маркова Н. Н. (с 1996 г. — Пискунова Н. Н.) (1997) Влияние гидродинамики на кинетические параметры роста кристаллов из раствора. ДАН. 353(4), 462–464.
  2. Пискунова Н. Н. (2011) Кристаллы из лекарственных растворов как модельные объекты для изучения элементарных процессов роста и растворения. Минералогические перспективы: Материалы межд. минерал. семинара с межд. участием, 17–20 мая 2011 г. Сыктывкар: Геопринт, 132–134.
  3. Пискунова Н. Н., Никулова Н. Ю., Крючкова Л. Ю., Исаенко С. И. (2016)Наноморфология зерен пирита из туфогравелитов хребта Сабля. Современные проблемы теоретической, экспериментальной и прикладной минералогии: Материалы III межд. мин. семинара с межд. участием, 17–20 мая 2016 г. Сыктывкар: Геопринт, 51–53.
  4. Пискунова Н. Н., Сокерина Н. В., Николаев А. Г., Исаенко С. И., Попов М. П. (2018) Наноморфология включений в кристаллах фенакита Уральских Изумрудных копей. Современные проблемы теоретической, экспериментальной и прикладной минералогии: Материалы IV мин. семинара с межд. участием, 22–24 мая 2018 г. Сыктывкар: Геопринт, 81–82.
  5. Пискунова Н. Н., Кряжев А. А. (2021) Нано- и микроморфологические доказательства коллоидной структуры содержимого включений кольцевых силикатных кристаллов. Вестник геонаук. 8(320), 16–26.
  6. Пригожин И., Кондепуди Д. (2002) Современная термодинамика. От тепловых двигателей до диссипативных структур. М.: Мир, 461 с.
  7. Рашкович Л. Н., Петрова Е. В., Шустин О. А., Черневич Т. Г. (2003) Формирование дислокационной спирали на грани (010) кристалла бифталата калия. Физика твердого тела. 45(2), 378.
  8. Сокерина Н. В., Пискунова Н. Н. (2011) Условия роста кристаллов кварца на месторождении Желанное, приполярный Урал (по данным изучения флюидных и твердых включений). Геохимия. (2), 192–201.
  9. Sokerina N. V., Piskunova N. N. (2011) Growth Condition of Quartz Crystals at the Zhelannoe Deposit in the Nether Polar Urals: Evidence from Fluid and Solid Inclusions. Geochem. Int. 49(2), 181–190.
  10. Сокерина Н. В., Шанина С. Н., Зыкин Н. Н., Пискунова Н. Н., Исаенко С. И. (2013) Условия формирование золоторудной минерализации на проявлении Синильга, Приполярный Урал (по данным изучения флюидных включений). ЗРМО. (6), 89–105.
  11. Трейвус Е. Б., Пискунова Н. Н., В. И. Силаев. (2011) Метакристаллы пирита с Приполярного Урала с признаками пластических деформаций. Материалы межд. минерал. семинара с межд. участием, 17–20 мая 2011 г. Сыктывкар: Геопринт, 150–153.
  12. Трейвус Е. Б., Пискунова Н. Н., Симакова Ю. С. (2011) Скульптура кубических граней кристаллов пирита из Испании и возможная причина ее возникновения. Известия Коми научного центра УрО РАН. (8), 60–64.
  13. Чернов A. A., (1975) Устойчивость плоского фронта при анизотропной поверхностной кинетике. В кн. Рост кристаллов. Т. 11. Ереван: изд. Ереванского ун-та, 221–230.
  14. Чернов А. А., Гиваргизов Е. И., Багдасаров Х. С., Кузнецов В. А., Демьянец Л. Н., Лобачев А. Н. (1980) Современная кристаллография. Т. 3. М.: Наука, 407с.
  15. Capellades G., Bonsu J. O., Myerson A. S. (2022) Impurity Incorporation in Solution Crystallization: Diagnosis, Prevention, and Control. Cryst. Eng. Comm. 24, 1989–2001.
  16. Davis K. J., Nealson K. H., Lüttge A. (2007) Calcite and dolomite dissolution rates in the context of microbe–mineral surface interactions. Geobiology. 5(2), 191–205.
  17. Elhadj S., Chernov A. A., De Yoreo J. (2008) Solvent-mediated Repair and Patterning of Surfaces by AFM. Nanotechnol. 19, 105304 (1–9).
  18. Heiman R. B. (1975) Auflösung von Kristallen. Theorie und technische Anwendung. New York: Springer-Verlag, 45–65.
  19. Land T. A., Martin T. L., Potapenko S., Palmore G. T., De Yoreo J. J. (1999) Recovery of Surfaces from Impurity Poisoning During Crystal Growth. Nature. 399(3), 442–445.
  20. Lee-Thorp J.P., Shtukenberg A. G., Kohn R. V. (2017) Effect of Step Anisotropy on Crystal Growth Inhibition by Immobile Impurity Stoppers. Cryst. Growth Des. 17(10), 5474–5487.
  21. Lucre`ce H., Nicoud A., Myerson S. (2019) The Influence of Impurities and Additives on Crystallization. In: Handbook of Industrial Crystallization. (Eds.: Myerson, A.S.; Erdemir, D.; Lee, A.Y.). Cambridge: Cambridge University Press. 4, 115–135.
  22. Lutjes N. R., Zhou S., Antoja-Lleonart J., Noheda B., Ocelík V. (2021) Spherulitic and rotational crystal growth of Quartz thin films. Sci. Rep. 11, 14888.
  23. Nakada T., Sazaki G., Miyashita S., Durbin S. D., Komatsu H. (1999) Direct AFM Observations of Impurity Effects on a Lysozyme Crystal. J. Cryst. Growth. 196, 503–510.
  24. Poornachary S. K., Chow P. S., Tan R. B.H. (2008) Impurity Effects on the Growth of Molecular Crystals: Experiments and Modeling. Adv. Powder Technol. 19, 459–473.
  25. Rusli I. T., Schrader G. L., Larson M. A. (1989) Raman spectroscopic study of NaNO3 solution system — solute clustering in supersaturated solutions. J. Cryst. Growth. 97(2), 345–351.
  26. Silaev V. I., Kokin A. V., Kiseleva D. V., Piskunova N. N., Lutoev V. P. (2013) New Potentially Industrial Type of Indium Sulfide-Manganese Ore. In: Indium. Properties, Technological Applications and Health Issues (Eds.: Hsaio G. Woo, Huang Tsai Choi). New York: Nova Science Publishers, 261–272.
  27. Teng H., Dove P., Orme C., De Yoreo J. (1998) Thermodynamics of Calcite Growth: Baseline for Understanding Biomineral Formation. Science. 282, 724–727.
  28. Zareeipolgardani B., Piednoir A., Colombani J. (2019) Tuning biotic and abiotic calcite growth by stress. Cryst. Growth Des. 19(10), 5923–5928.
  29. Zhong X., Shtukenberg A. G., Hueckel T., Kahr B., Ward M. D. (2018) Screw Dislocation Generation by Inclusions in Molecular Crystals. Cryst. Growth Des. 18(1), 318–323.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. (a) — traces of dissolution on the (111) face of alabandine (Vysokogornoye m., Yakutia), stimulated by defects, including solid inclusions. (b) — AFM relief of the wall of a gas-liquid bubble (the edge is shown by arrows) on a polished section of high-temperature quartz (Sinilga ore occurrence, Subpolar Urals). Microcrystals of presumably epigenetic inclusions are visible inside. Scale bars — 5 μm.

下载 (252KB)
3. Fig. 2. AFM image of spiral mounds on the inner walls of gas-liquid inclusions of crystals: (a) phenacite, (b) amethyst, (c) quartz.

下载 (572KB)
4. Fig. 3. Dissolution relief on the (120) face of topaz (Sherlovogorskoye deposit, Transbaikalia), the presumed direction of fluid flow is shown by the arrow at the bottom. Scale bar is 10 µm.

下载 (445KB)
5. Fig. 4. The AFM tip, acting with a small force normal to the surface, causes the occurrence of type 1 defects (a) and a scratch appears (shown by arrows in the middle image (b)). In the lower part of the figure, the projection of the dioxidine structure onto the (100) face: shear stresses from the tip movement along the surface in some region I are responsible for the occurrence of type 2 defects (edge dislocations and interstitial defects) in region II at a significant distance from the impact site, which leads to the loss of morphological stability over a large area ((b), lower image). Scale bars are 2 μm.

下载 (738KB)
6. Fig. 5. (a) — successive images of dissolution on a scratch in a slightly undersaturated solution. The images indicate the time from the beginning of the experiment. Scale bars are 5 μm. (b) — layer-by-layer growth of the surface before and after scratching the top of the dislocation mound. The height of the steps is equal to the diameter of the dioxidine molecule. The images indicate the time from the beginning of the experiments. Scale bars are 2 μm.

下载 (402KB)
7. Fig. 6. Result of statistical processing of AFM data: (a) — tangential growth velocity and its fluctuations (shown as confidence interval) for a mound in the experiment without impact; (b) — giant velocity fluctuations in the experiment with scratches; (c) — oscillatory nature of the average tangential velocity on the left and right scratches. Each point of the graphs is constructed based on processing about 500–1100 velocity values.

下载 (323KB)
8. Fig. 7. (a) — AFM images of the process of foreign particles growing into the (100) face of dioxidine. The time elapsed since the first image is marked on each. It is evident that the solid impurities do not completely grow over; holes remain above them for a long time. After two hours, a spiral hillock with 0.8 nm high steps appeared exactly at the coordinate of one of the particles. Scale bars are 5 μm. (b) — velocities and their fluctuations in the experiment with impurities. Each point on the graphs is the result of processing about 900 velocity values. The inset shows an optical image of dioxidine crystals with a schorl impurity in transmitted light.

下载 (579KB)
9. Fig. 8. (a) — the surface of sodium chloride growing in a solution flow (the direction of the flow is shown by the arrow, the time elapsed from the first image is indicated on each image, scale bars are 2 μm); (b) — stability and instability of the face in the flow according to Chernov.

下载 (242KB)
10. Fig. 9. Change of the dominant growth mound on the (101) face of potassium dihydrogen phosphate in a directed solution flow. The flow direction is shown by an arrow. (a) — calculations of the kinetic coefficient β for the selected direction at the initial and final moments of observation, (b) — increase in the growth rate of the leading mound from 2 to 6 nm/s.

下载 (273KB)
11. Fig. 10. AFM images of the dissolution of the (100) face of a KDP crystal in a solution flow. (a) — the largest growth mound, the most active during dissolution, (b) — wedging out of microcrystals in the flow. The direction of the flow is shown by the arrow. The time elapsed since the first snapshot is marked on each image. Scale bars — 3 μm.

下载 (296KB)

版权所有 © Russian Academy of Sciences, 2024