ACTINIDES IN THE SOIL CHRONOSEQUENCE OF THE AMUR RIVER FLOODPLAIN

封面

如何引用文章

全文:

详细

For the first time in the Russian Far East, a study was conducted to assess the rate of accumulation of gross and mobile forms of actinides (U and Th) in a 5000-year-old soil chrono-sequence embedded within the floodplain of the middle reaches of the Amur River. The relationships between actinides and the properties of alluvial and residual alluvial soils are characterized using regression models. It was found that during the evolution of soils, the content of the gross form of actinides in soils of the automorphic series increased for U from 1 to 2 mg/kg, for Th from 4 to 10 mg/kg. In the soils of the hydromorphic series, over a shorter period of time (2600 years), the increase was from 1 to 3 mg/kg for U and from 4 to 12 mg/kg for Th. The content of the mobile U form in automorphic and hydromorphic soils increased on average from 0.1 to 0.4 mg/kg, for Th from 0.02 to 0.2 mg/kg. In automorphic soils, accumulation of U is observed while the flood regime is in effect, Th continues to accumulate even after the floodplain leaves the flood zone. In hydromorphic soils, the accumulation of actinides continues over the entire chronological range. The results obtained show that the main soil properties determining the accumulation of actinides in soils are the content of clay minerals and iron oxides. The intake of actinides into the soils of the Amur River floodplain is carried out mainly due to the weathering of melanocratic granitoid minerals in the composition of alluvium. The mobilization of actinides is influenced by pH in automorphic soils and Eh in hydromorphic soils.

作者简介

A. Martynov

Institute of Geology and Nature Management Far Eastern Branch Russian Academy of Sciences

Email: lexxm@ascnet.ru
Blagoveshchensk, Russia

参考

  1. Бойнов А.И. (1984) Пойменные земли Сибири, Дальнего Востока и их сельскохозяйственное использование. Проблемы использования и охраны почв Сибири и Дальнего Востока (Под ред. Р.В. Ковалева). Новосибирск: Наука, 69–72.
  2. Горбунов Н.И. (1971) Методы минералогического и микроморфологического изучения почв. М.: Изд-во Наука, 175 с.
  3. Градусов Б.П. (1976) Минералы со смешанослойной структурой в почвах. М.: Изд-во Наука, 128 с.
  4. Каменев А.Г., Ефимов И.А., Чубинский-Надеждин И.В. (1996) Обнаружение следовых количеств актиноидов в пробах методом термоионизационной масс-спектрометрии. Атомная энергия. 80(1), 43–47.
  5. Корнилович Б.Ю., Пшинко Г.Н., Ковальчук И.А. (2001) Влияние фульвокислот на взаимодействие U(VI) c глинистыми компонентами почв. Радиохимия. 43(5), 404–407.
  6. Зайдельман Ф.Р. Генезис и экологические основы мелиорации почв и ландшафтов. М.: Изд-во КДУ, 720 с.
  7. Мартынов А.В. (2021) Подвижные формы фосфора в пойменных катенах реки Амур. Бюллетень Почвенного института имени В.В. Докучаева. 107, 61–91.
  8. Никольская В.В. Физико-географические исследования в бассейне верхнего и среднего Амура в связи с работой по отысканию путей борьбы с наводнениями на Зейско-Буреинской равнине. ЗейскоБуреинская равнина (Под ред. Г.Д. Рихтер). М.: АН СССР, 85–133.
  9. Новицкий М.В., Донских Д.В., Чернов И.Н. (2009) Лабораторно-практические занятия по почвоведению. Санкт-Петербург: Проспект Науки, 2009. 320 с.
  10. Ознобихин В.И., Синельников Э.П., Рыбачук Н.А. (1994) Классификация и агропроизводственные группировки почв Приморского края. Владивосток. ДВО РАН, 93 с.
  11. Павлова Л.М., Радомская В.И., Юсупов Д.В. (2015) Высокотоксичные элементы в почвенном покрове на территории г. Благовещенска. Экология и промышленность России. 19(5), 50–55.
  12. Радомская В.И., Юсупов Д.В., Павлова Л.М., Сергеева А.Г., Воропаева Е.Н. (2017) Использование многомерного статистического анализа для исследования эколого-геохимических свойств почв г. Благовещенска. Ученые записки Казанского университета. Серия естественные науки. 159(4), 602–617.
  13. Разворотнева Л.И., Маркович Т.И. (2012) Физикохимические особенности аккумуляции уранил-иона на рутиле. Вестник ОНЗ РАН. 4. NZ9001.
  14. Смыслов А.А. (1974) Уран и торий в земной коре. Л.: Недра, 1974. 231 с.
  15. Сорокина О.А., Зарубина Н.В. (2011) Химический состав донных отложений среднего течения р. Амур. Тихоокеанская геология. 30(5), 105–113.
  16. Чевычелов А.П., Собакин П.И. (2020) Содержание и распределение естественных радионуклидов 238U, 232Th, 40K в мерзлотных почвах Центральной Якутии. Журнал Сибирского федерального университета. Биология. 13(1), 109–123.
  17. Шишов Л.Л., Тонконогов В.Д., Лебедева И.И. Герасимова М.И. (2004) Классификация и диагностика почв России. Смоленск: Ойкумена, 342 с.
  18. Asylbaev I.G., Khabirov I.K., Gabbasova I.M., Rafikov B.V., Lukmanov N.A. (2017) Geochemistry of thorium and uranium in soils of the southern Urals. Eurasian Soil Sci. 50(12), 1406–1413.
  19. Baeza A., del Rio M., Jimenez A., Miro C., Paniagua J. (1995) Influence of geology and soil particle size on the surface area/volume activity ratio for natural radionuclides. J. Radioanal. Nucl. Chem. 189, 289–299.
  20. Barnett M.O., Jardine P.M., Brooks S.C., Selim H.M. (2000) Adsorption and transport of uranium (VI) in subsurface media. Soil Sci. Soc. Am. J. 64(3), 908–917.
  21. Bayley P.B. (1995). Understanding large river — floodplain ecosystems. BioScience. 45(3), 153–158.
  22. Biscay P.E. (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and Adjacent Seas and Oceans. Geol. Soc. Am. Bull. 76(7), 803–832.
  23. Cardenas E., Wu W.M., Leigh M.B., Carley J., Carroll S., Gentry T., Luo J., Watson D., Gu B., Ginder-Vogel M. (2010) Significant association between sulfate-reducing bacteria and uranium-reducing microbial communities as revealed by a combined massively parallel sequencingindicator species approach. Appl. Environ. Microbiol. 76(20), 6778–6786.
  24. Cornu S., Lucas Y., Lebon E., Ambrosi J.P., Luizão F., Rouiller J., Bonnay M., Neal C., (1999) Evidence of titanium mobility in soil profiles, Manaus, central Amazonia. Geoderma. 91(3), 281–295.
  25. CCME. (2011) Canadian water quality guidelines: uranium. scientific criteria document. Canadian council of ministers of the environment. Canada. Winnipeg: MB, 121 p.
  26. Cook H.E., Johnson P.D., Matti J.C., Zemmels I. (1975) Methods of sample preparation and X-ray diffraction data analysis, X-ray Minеralogy laboratory, Deep Sea Drilling Projekt. Initial Rep. Deep Sea Drill. Proj. 28, 999–1007.
  27. Crawford S.E., Lofts S., Liber K. (2017) The role of sediment properties and solution pH in the adsorption of uranium(VI) to freshwater sediments. Environmental Pollution. 220 (Pt B), 873–881.
  28. Cui Q. Zhang Z., Beiyuan J., Cui Y., Chen L., Chen H., Fang L. (2023) A critical review of uranium in the soilplant system: Distribution, bioavailability, toxicity, and bioremediation strategies. Crit. Rev. Environ. Sci. Technol. 53(3), 340–365.
  29. Cumberland S.A., Douglas G., Grice K., Moreau J.W. (2016) Uranium mobility in organic matter-rich sediments: A review of geological and geochemical processes. Earth Sci. Rev. 159(1–2), 160–185.
  30. Degueldre C., Kline A. (2007) Study of thorium association and surface precipitation on colloids. Earth Planet. Sci. Lett. 264(1–2), 104–113.
  31. Edayilam N., Ferguson B., Montgomery D., Al Mamun A., Martinez N., Powell B.A., Tharayil N. (2020) Dissolution and vertical transport of uranium from stable mineral forms by plants as influenced by the cooccurrence of uranium with phosphorus. Environ. Sci. Technol. 54(11), 6602–6609.
  32. Elles P., Lee S.Y. (2002) Radionuclide-contaminated soil: a mineralogical perspective for their remediation. In: Soil mineralogy with environmental applications (Eds. Dixon J.B., Schulze D.G.). Madison, Wisconsin: Soil Science Society of America, Inc., 737–763.
  33. Goulet R.R., Thompson P.A., Serben K.C., Eickhoff C.V. (2015) Impact of environmentally based chemical hardness on uranium speciation and toxicity in six aquatic species. Environ. Toxicol. Chem. 34(3), 562–574.
  34. Graf M., Lair G.J., Zehetner F., Gerzabek M.H. (2007) Geochemical fractions of copper in soil chronosequences of selected European floodplains. Environ Pollut. 148(3), 788–796.
  35. Huggett R.J. (1998) Soil chronosequences, soil development, and soil evolution: a critical review. Catena. 32, 155–172.
  36. IUSS Working Group WRB. (2014) World reference base for soil resources international soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports. № 106. FAO, Rome, 181 р.
  37. Kabata-Pendias A. (2011) Trace elements in soils and plants. Boca Raton: CRC Press, 534 c.
  38. Kawalko D., Jezierski P., Kabala C. (2021) Morphology and physicochemical properties of alluvial soils in riparian forests after river regulation. Forests. 12(3), 329.
  39. Külahc F., Çiçek S. (2019) On the determination of transportation, range and distribution characteristics of Uranium-238, Thorium-232 and Potassium-40: a critical review. Environ. Earth Sci. 78(24), 1–29.
  40. Lee S.Y., Baik M.H. (2009) Uranium and other trace elements’ distribution in Korean granite: implications for the influence of iron oxides on uranium migration. Environ. Geochem. Health. 31(3), 413–420.
  41. Liao R., Shi Z., Chen Y., Wang X., (2020) Redox potential and uranium sorption onto sediments: kinetic and thermodynamic characteristics. Chem. Ecol. 36(5), 475–485.
  42. Makarov V.N. (2023) Actinides Th and U in Atmospheric Particulate Matter in Yakutsk. Geochem. Int. 61, 95–102.
  43. Manoj S., Thirumurugan M., Elango L. (2020) Determination of distribution coefficient of uranium from physical and chemical properties of soil. Chemosphere. 244, 125411.
  44. Martín-García J.M., Manuel S-M.J.C., Víctor A., Gabriel D., Rafael D. (2016) Iron oxides and rare earth elements in the clay fractions of a soil chronosequence in southern Spain. Eur. J. Soil Sci. 67(6), 749–762.
  45. Mehta V.S., Maillot F., Wang Z., Catalano J.G., Giammar D.E. (2016) Effect of reaction pathway on the extent and mechanism of Uranium (VI) immobilization with calcium and phosphate. Environ. Sci. Technol. 50(6), 3128–3136.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025