Comparative geodynamics of Aleutian and Izu-Bonin-Mariana island-arc systems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Fulfilled comparative analysis of the Aleutian and Izu-Bonin-Marian island-arc systems structure and geodynamic development. Izu-Bonin-Maian island-arc systems situated along сontinental margin of Eurasia in the West of Pacific Ocean. The Aleutian island-arc system is situated between the North American and Eurasian continents. Aleutian and Izu-Bonin-Marian island-arc systems appeared to be of the same age. Both island-arc systems form autonomous Philippine and Beringia small lithospheric plates. Izu-Bonin-Marianas island-arc system formed on exclusively geodynamic interaction of oceanic plate and back-arc basins, with the main role of the Pacific subduction. Aleutian system at the initial stage was formed as a result from separation of the part of Pacific Cretaceous crust by Aleutian subduction zone.

The subsequent process of Aleutian system development was caused by geodynamics of movement of North American and Eurasian lithospheric plates. Pacific plate constant oblique subduction led to expansion of Aleutian island-arc system in the Western direction.

Full Text

Restricted Access

About the authors

V. D. Chekhovich

Geological Institute, Russian Academy of Sciences

Author for correspondence.
Email: Vadim@ilran.ru
Russian Federation, 7, Pyzhevsky lane, Moscow, 119017

A. N. Sukhov

Geological Institute, Russian Academy of Sciences

Email: Vadim@ilran.ru
Russian Federation, 7, Pyzhevsky lane, Moscow, 119017

M. V. Kononov

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: Vadim@ilran.ru
Russian Federation, 36, Nakhimovskii prospect, Moscow, 117997

O. G. Sheremet

Geological Institute, Russian Academy of Sciences

Email: Vadim@ilran.ru
Russian Federation, 7, Pyzhevsky lane, Moscow, 119017

References

  1. Богданов Н.А. Глубоководные впадины запада Тихого океана // М.: Недра, 1990. 189 с.
  2. Богданов Н.А., Непрочнов Ю.П. Геология глубоководных впадин Берингова моря // 27-й МГК. История происхождения окраинных и внутренних морей. Симпозиум SW-06.2.3. Доклады. М.: Наука, 1984. Т. 6. Ч. 2. С. 4–11.
  3. Богданов Н.А., Вишневская В.С., Сухов А.Н., Федорчук А.В., Чехович В.Д. Океаническая олистострома западного побережья Алеутской впадины (Берингово море) // Геотектоника. 1982. № 5. С. 74–80.
  4. Богданов Н.А., Гарвер Дж.И., Чехович В.Д., Палечек Т.Н., Леднева Г.В., Соловьев А.В., Коваленко Д.В., Коваленко, Д.В., Соловьев А.В. Обстановки формирования флишоидно-олистостромового комплекса западного побережья Алеутской глубоководной впадины // Геотектоника. 1999. № 5. С. 52–66.
  5. Вержбицкий Е.В., Кононов М.В. Генезис литосферы северной части мирового океана // М.: Научный мир, 2010. 478 с.
  6. Кононов М.В. Тектоника плит северо-запада Тихого океана. М. Наука, 1989. 169 с.
  7. Ландер А.В., Букчин Б.Г., Дрознин Д.В., Кирюшин А.В. Тектоническая позиция и очаговые параметры Хаилинского (Корякского) землетрясения 8 марта 1991 года: Существует ли плита Берингия? // Геодинамика и прогноз землетрясений. Вычислительная сейсмология. М.: Наука, 1994. Вып. 26. С. 103–122.
  8. Литосфера Филиппинского моря // Литосфера окраинных и внутренних морей / М.: Геофизический Центр РАН — Московский центр данных по физике твердой Земли. http// www.wdcb.ru/sep/lithosphere/
  9. Нападенский Г.Б., Шеремет О.Г. Разработка алгоритмов совместного анализа гравитационного и магнитного полей в трёхмерном случае // Разведочная геофизика. 1982. № 94. С. 134–146.
  10. Родников А.Г., Заборинская Л.П., Рашидов В.А., Родкин М.В., Сергеева Н.А. Геотраверс Северо-Китайская равнина — Филиппинское море — Магел лановы горы // Вест. КРАУНЦ. 2007. № 1. Вып. 9. С. 79–89.
  11. Ростовцева Ю.В. Литология палеоцен-эоценовых и эоценовых отложений Командорских островов. Автореф. дисс. … канд. геол.-мин. наук. М.: ГИН РАН, 1994. 31 с.
  12. Силантьев C.А., Баранов Б.В., Колесов Г.М. Геохимия и петрология амфиболитов хребта Ширшова (Берингово море) // Геохимия. 1985. № 12. С. 1694–1704.
  13. Соколов С.Д. Очерк тектоники Северо-Востока Азии // Геотектоника. 2010. № 6. С. 60–78.
  14. Сухов А.Н., Чехович В.Д., Пресняков С.Л., Лепехина Е.Н., Ландер А.В. Возраст фундамента подводного хребта Ширшова (Берингово море) по результатам исследования цирконов методом U–Pb SHRIMP // ДАН. 2011. Т. 439. № 2. С. 233–239.
  15. Чехович В.Д., Сухов А.Н., Кононов М.В., Паланджян С.А. Геодинамика северо-западного сектора Тихоокеанского подвижного пояса в позднемеловое-раннепалеогеновое время // Геотектоника. 2009. № 4. С. 37–62.
  16. Чехович В.Д., Сухов А.Н., Шеремет О.Г., Кононов М.В. Кайнозойская геодинамика Беринговоморского региона // Геотектоника. 2012. № 3. С. 47–69
  17. Чехович В.Д., Шеремет О.Г., Кононов М.В. Сдвиговая система в земной коре Берингова моря — реликт границы Евразийской и Северо-Американской литосферных плит// Геотектоника. 2014. № 4. С. 3–22.
  18. Чехович В.Д., Сухов А.Н. Геодинамика формирования палеогеновой островной дуги подводного хребта Бауэрса (Берингово море)// ДАН. 2015. Т. 461. № 2. С. 201–206.
  19. Шеремет О.Г. Численное и аналитическое моделирование гравимагнитных полей для изучения глубинных структур коры и перспектив нефтегазоносности // Тектоника и геофизика литосферы. Материалы 35-го Тектонического совещания / M.: ГЕОС. 2002. C. 319–323.
  20. Arculus R.J., Ishizuka O., Bogus K.A. et al. A record of spontaneous subduction initiation in the Izu-Bonin-Mariana arc // Nature Geoscience. 2015. Vol. 8. P. 728–734.
  21. Baranov B.V., Seliverstov N.I., Murav’ev A.V., Muzurov E.L. The Komandorsky Basin as a product of spreading behind a transform plate boundary // Tectonophysics. 1991. Vol. 199. P. 237–269.
  22. Barth G.A., Scheirer D.S., Christeson G.L., Stern R.J., and Scholl D.W. New geophysical constraints on the tectonic history of the Bering Sea // AGU Fall meeting. Abstract 2012 T51D-2625.
  23. Bruns T.R., von Huene R., Culotta R.C., Lewis S.D., Ladd J.W. Geology and petroleum potential of the Shumagin Margin, Alaska // Geology and Resource Potential of the Continental Margin of Western North America and Adjacent Ocean Basins: Beauford Sea to Baja California /D.W. Scholl, A. Grantz, J.D. Vedder (eds.). Circum Pacific Council for Energy and Mineral Resources, Houston, TX. 1987. Vol. 6. P. 157–189.
  24. Calvert A.J., McGeary S. Seismic reflection imaging of ultradeep roots beneeth the eastern Aleutian island arc// Geology. 2013. Vol. 41. No 2. P. 203–206.
  25. Christensen G.L., Bath G.A. Aleutian oceanic crust // Earth Planet. Sci. Lett. 2015. Vol. 426. P. 167–175.
  26. Cooper A.K., Marlow M.S., Ben-Avraham Z. Multichannel seismic evidence bearing on the origin of Bowers Ridge, Bering Sea // Geol. Soc. Am. Bull. 1981. Vol. 92. P. 474–484.
  27. Cooper A.K., Marlow M.S., Scholl D.W. Geologic framework of the Bering Sea crust // Scholl D.W., Grantz A., Vedder J.G. (eds.) Geology and Resource Potential of the Continental Margin of Western North America and Adjacent Ocean Basins: Beauford Sea to Baja California. Circum Pacific Council for Energy and Mineral Resources, Houston, TX. 1987. Vol. 6. P. 73–102.
  28. Cooper A.K., Marlow M.S., Scholl D.W., Stevenson A.J. Evidence for Сenozoic crustal extension in the Bering Sea region // Tectonics. 1992. Vol. 11. No 4. P. 719–731.
  29. Cowan D.S. Revisiting the Baranof-Leech River hypothesis for early Tertiary coastwise transport of the Chugach-Prince Willams terrane // Eart Planet. Sci. Lett. 2003. Vol. 213. No 2. P. 463–475.
  30. Cross R.S., Freymuler J. Evidence for and implication of a Bering Plate based on geodetic measurement from the Aleutians and Western Аlaska // J. Geophysical Research. 2008. Vol. 113. No B07405. P. 1–19.
  31. Deschamp A., Monie P., Lallemand S., Hsu S-K., Yah Y. Evidence for Early Cretaceous oceanic crust trapped in Philippine Sea Plate// Earth Planet. Sci. Lett. 2000. Vol. 179. No. 3-4. P. 503–516.
  32. Domeier M., Shepard D.E., Jacob J., Gaina C., Doubrovin P.V., Torsvik T.H. Intra oceanic subduction spanned the Pacific in the Late Cretaceous-Paleocene // Science Advance. 2017. Vol. 3. No 11. P. 1–5.
  33. Engebretson D.C., Cox A., Gordon R.G. Relative motions between oceanic and continental plates in the Pacific Basin // J. Geophysical Research.Vol. 89. B12. 1984. P. 10291–10310.
  34. Geist E.l., Scholl D.W. Application of continuum models to deformation of the Aleutian Island Arc // J. Geophysical Research. 1992. Vol. 97. B4. P. 4953–4967.
  35. Faccena C., Di Giuseppe E., Funiciello F., Lallemand S., Hunen van J. Control of seafloor aging on the migration of the Izu-Bonin-Mariana trench // Earth Planet. Sci. Lett. 2009. Vol. 288. No 3. P. 386–398.
  36. Fliender M.M., Klemperer S.L. Crustal structure transition from oceanic arc to continental arc, eastern Aleutian Island, Alaska Peninsula// Earth Planet. Sci. Lett. 2000. Vol. 179. No 3-4. P. 567–579.
  37. Gee J.S., Kent P.D. Source of oceanic magnetic anomalies and geomagnetic polarity timescale// Treatise on geophysics. Geomagnetism. 2007. Vol. 5. P. 455–507.
  38. Goes S.,Agrusta R., von Hunen J., Carel F. Subduction-trasition zone interaction: A review// Geosphere. 2017. Vol. 13. No 3. P. 644–664.
  39. Hall C.E., Gurnis M., Sdrolias M., Lavier L., Müller R. Catastrophic initiation of subduction following forced convergence across fracture zones // Earth Planet. Sci. Lett. 2003. Vol. 212. No 4. P. 15–30.
  40. Holbrook W.S., Lizarralde D., McGeary S., Bangs N., Deibold J. Structure and composition of the Aleutian island arc and implications for continental crustal growth // Geology. 1999. Vol. 27. No 6. P. 31–34.
  41. Hydeman R.D., Currie C.A., Mazzotti S.P. Subduction zone backarcs, mobile belts, and orogenic heat // GSA Today. 2005. Vol. 15. No 2. P. 4–10.
  42. Ishizuka O., Hickey-Vargas R., Arculus R.J., Yogodzinski G.M., Savov I.P., Kusano Y., McCarty A., Brandl Ph.A., Sudo M. Age of Izu-Bonin-Mariana arc basement // Earth Planet. Sci. Lett. 2018. Vol. 481. No 2. P. 80–90.
  43. Jicha B.R., Scholl D.W., Singer B.S., Yogodzinski G.M., Kay S.M. Revised age of Aleutian Island arc formation implies high rate of magma production // Geology. 2006. Vol. 34. No 3. P. 661–664.
  44. Jicha B.R.,Ray S.M., Shaen A.J.,Tibbets A.K., Singer D.W. Evolution of Aleutian arc // Active tectonic and magmatism of Alaska, the Aleutian and Northwest Canada. AGU Fall Meeting, San Francisco, 2014.
  45. Janiszewski H.A., Abers G.A., Shillington D.J., Calkins J.A. Crustal structure along the Aleutian island arc: constrained by active source data// Geochemistry, Geophysics, Geosystems. 2013. Vol. 14. No 8. doi: 10.1002/ggge.20211
  46. Karig D.E. Origin and development of marginal basins in Western Pacific// J. Geophysical Research. 1971. Vol. 76. No 2. P. 2542–2561.
  47. Kelemen P.B., Yogodzinski G.M., Scholl D.W. Along-strike variation in lavas of the Aleutian island arc: Implications for the genesis of high Mg andesite and the continental crust // Inside the Subduction Factory / J. Eiler (ed.). AGU Monograph. 2003. Vol. 138. P. 223–276.
  48. Klemperer S.L., Miller E.L., Grantz A., Scholl D.W. Crustal structure of the Bering and Chukchi shelves: Deep seismic reflection profiles across the North American continent between Alaska and Russia // Geol. Soc. Am. Spec. Paper. 2002. Vol. 360. P. 1–24.
  49. Kogan M.G., Frolov D.I., Vasilenko N.F., Fraymuller J.T., Steblov G.M., Ekstom G., Tikov N.N., Prytkov A.S. Plate coupling and strain in far western Aleutian arc modeled from GPS data // Geophys. Res. Lett. 2017. Vol. 44. No 7. P. 3176–3183.
  50. Lallemand S. Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction // Progress in Еarth and Planetary Science. 2016. Vol. 4. P. 3–15.
  51. Langseth M.G., Hobart M.A., Horai K. Heat flow in the Bering Sea // J. Geophysical Research. 1980. Vol. 85. B7. P. 3740–3750.
  52. Layer P.W., Scholl D.W., Newberry R.J. Ages of igneous basement from the Komandorsky Islands, Far Western Aleutian Ridge // Eos Trans. AGU. 2007. Vol. 88. No 52. P. 49–56.
  53. Lay T., Ye L., Cheung K.F., Kamamori H., Freymuller J., Steblov G.M., Kogan M.G. Rupture along 400 km of the Bering fracture zone in the Komandorski island earthquake (Mw 7,8) of 17 July 2017 // . Geophys. Res. Lett, 2017. Vol. 44. No 24. P 12161–12169.
  54. Lonsdale S. Paleogene history of the Kula plate // Geol. Soc. Am. Bull. 1988. Vol. 100. No 5. P. 735–754.
  55. Marlow M.S., Cooper A.K., Fisher M.A. Petroleum geology of the Beringian continental shelf // Geology and resource potential of the continental margin of Western North America and adjacent Ocean Basins: Beauford Sea to Baja California / D. Scholl, A. Grantz, J.D. Vedder (eds.). Circum Pacific Council for Energy and Mineral Resources, Houston, TX. 1987. Vol. 6. P. 103–122.
  56. Niu Y. Testing the geologically testable hypothesis on subduction initiation // Sci. Bull. 2016. Vol. 61. P. 1231–1235.
  57. Ogg J.G.. Geomagnetic polarity timescale. Chapter 5 // Gradstein G.M., Schmitz J.G.O.D., Ogg J.M. (Eds.). The geologic timescale. Boston: Elsevier, 2012. P. 85–113.
  58. Plumley P.W., Coe R.S., Byrne T. Paleomagnetism of the Paleocene Ghost Rocks formation, Prince Williams terraine, Alaska // Tectonics. 1983. Vol. 32. No 3. P. 295–314.
  59. Reagan M.K., Carvallo C., Ferre E.C., Godard M. Subduction initiation and ophiolite crust: new insights from IODP drilling // Int. Geol. Rev. 2017. P. 1–12. doi: 10.1080/00206814.2016.1276482.
  60. Ruppert N.A., Kozyreva N.P., Hansen R.A. Review of crustal seismisity in the Aleutian arc and implication of arc deformation // Tectonophysics. 2012. Vol. 522–523. No 4. P. 150–157.
  61. Sandwell D.T., Smith W.H.F. Marine gravity anomaly from Geosat and ERS 1 satellite altimetry // J. Geophys. Res. 1997. Vol. 102. No. B5. P. 10039–10054.
  62. Sasaki T., Yamazaki T., Ishizuki O. A revised spreading model of the West Philippine basin// Earth Planets Space. 2014. Vol. 66. No 1. P. 66–83.
  63. Sato K., Kawabata H., Scholl D.W., Hyodo H., Takahashi H, Suzuki K, Kamagai H. 40Ar–39Ar dating and tectonic implication of volcanic rocks recovered at IODP Hole U1342 on Bowers Ridge, Bering Sea // Deep Sea Research. Part II. Tropical Study in Oceanography. 23 March, 2015. doi: 10.1016/j.dsr2.2015.03.008
  64. Scheirer D.S., Barth G.A., Scholl D.W., Stern R.J. New magnetic anomaly compilation illuminate the formation of the Aleutian Basin// Abstract OS13B-1706 presented at the 2013 Fall Meeting AGU. San Francisco, California 9-13 December, 2013.
  65. Scholl D.W. Viewing the tectonic evolution of the Kamchatka-Aleutian (KAT) connection with an Alaska crustal extrusion perspective // Volcanism and Subduction: The Kamchatka Region / J. Eichelberger, D. Scholl (eds.). AGU Geophys. Monogr. Ser., Washington, D.C. 2007. Vol. 172. P. 3–35. doi: 10.1029/172GM03
  66. Scholl D.W., Vallier T.L Stevenson A.J. Geologic evolution and petroleum geology of the Aleutian ridge // Geology and resource potential of the continental margin of Western North America and adjacent Ocean Basins: Beauford Sea to Baja California / D.W. Scholl, A. Grantz, J.D. Vedder (eds.). Circum Pacific Council for Energy and Mineral Resources, Houston, TX. 1987. Vol. 6. P. 73–102.
  67. Sdrolias M., Muller D. Controls on back-arc basin formation // Geochem. Geophys. Geosystem. 2006. V. 7. No 4. P. 1–40.
  68. Sharp W.D., Clague D.A. 50-Ma Initiation of Hawaiian-Emperor Bend record major change in Pacific plates motion // Science. 2006. Vol. 315. No 2. P. 1281–1287.
  69. Seton M. Flament N. Whittaker J., Muller D., Gurnis M., Bower D.J. Ridge subduction sparked reorganization of the Pacific plate-mantle system 60–50 years ago // Geophys. Res. Lett. 2015. Vol. 42. No 6. P. 1732–1740.
  70. Sheremet O.G. The gravity and magnetic method as a tool determination of petroleum structures and fault zones // 31st Int. Geol. Congress. Abstracts. Rio de Janeiro: Brazilian Geological Society, 2000.
  71. Shillington D.J., Van Avendonk H.J.A., Holbrook W.J., Kelemen P.J., Hornbach M.J. Composition and structure of the central Aleutian island arc from arc-parallel wide-angle seismic data // Geochem. Geophys. Geosystem. 2004. Vol. 5. No 10. P. 1–32.
  72. Steinberger B., Sutherland R., O`Connel R.J. Prediction of Emperor-Hawaii location from revised model of plate motion and mantle flow // Nature. 2004. Vol. 430. P. 167–173.
  73. Stern R.J., Barth G.A., Scheirer D.S., Scholl D.W. Did the Bering Sea form as a Cenozoic Backarc Basin // T34S The Geodynamics of Tectonics. AGU Fall Meeting. 2012.
  74. Stern R.J., Reagan M., Ishuzuka O., Ohara Y., Whattam S. To understand subduction initiation, study forearc crust, to understand forearc crust, study ophiolites // Lithosphere. 2012. DOI: 101130/L183.1
  75. Takahasi N., Kodaira S., Klemperer S.L., TatsumiY., Kaneda Y., Suyehiro K. Crustal structure and evolution of the Mariana intra-oceanic islsnd arc // Geology. 2007. Vol. 35. No 3. P. 203–206.
  76. Tamaki K., Honza E. Global tectonics and formation of marginal basins: Role of the western Pacific // Episodes. 1991. Vol. 14. No 3. P. 224–230.
  77. Tarduno J.A., Bunge H.P., Sleep N., Hansen U. The bend Hawaiian-Emperor hotspot track: Inheriting mantle wind // Science. 2009. Vol. 324. No 6. P. 50–53.
  78. Taylor B., Goodliffe A.M. The West Philippine Basin and initiation of subduction, revisited. // Geophys. Res. Lett. 2004. Vol. 31. No. L12612. DOI: 1029/2004GL020136.
  79. Uyeda S., Kanamory H. Back-Arc opening and the mode of subduction // J. Geophysical Research. 1979. Vol. 84. No. B3. P. 1049–1062.
  80. Uyeda S., Ben Avraham Z. Origin and development of the Philippine Sea // Nature Physical Science. 1972. Vol. 40. P. 176–178.
  81. Van Avendonk H.J.A., Shillington D.J., Hollbrook W.S., Hornba M.J. Inferring crustal Structure in the Aleutian island arc from a spars wide-angle seismic data set // Geochem. Geophys. Geosystem. 2004. Vol. 5. No 8. P. 1–40.
  82. Wanke M., Portnyagin M., Hoernle K., Werner R., Hauff F., van den Bogaard P., Garbe-Schönberg Bowers Ridge (Bering Sea): An Oligocene-Early Miocene island arc // Geology. 2012. Vol. 40. No 2. P. 687–690.
  83. Whittaker J.M., Müller R.D., Sdrolias M. Revised history of Izanagi-Pacific ridge subduction // IBM07 NSF-Margins Workshop. 2007.
  84. Worrall, D.M. Tectonic history of the Bering Sea and the evolution of Tertiary strike-slip basins of the Bering shelf // Geol. Soc. Am. Special Paper. 1991. Vol. 257. 120 p.
  85. Wright N.M., Seton M., Wiliams S.E., Muller R.D. The Late Cretaceous to recent tectonic history of the Pacific Ocean basin // Earth Sci. Rev. 2016. Vol. 154. P. 138–173.
  86. Yogodzinski G.M., Rubenstone J.L, Kay S.M., Kay R.W. Magmatic and tectonic development of the western Aleutians: An oceanic arc in a strike-slip setting // J. Geophysical Resrarch. 1993. Vol. 98. No. B7. P. 11807–11834.
  87. http//www.gebco.net/data_and_products/printable_maps/gebco_world_map/ Accessed July 1, 2018.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of zoning of island-arc systems in the west Pacific.

Download (1MB)
3. Fig. 2. The main morphostructures of the Izu-Bonin-Mariana island-arc system (according to [87] with changes and additions).

Download (1MB)
4. Fig. 3. The main morphostructures of the Aleutian island-arc system (according to [87], changes and additions).

Download (655KB)
5. Fig. 4. The position of the profiles for determining the anomalies of the D - function in the northeastern part of the Aleutian Basin and in the outer part of the Bering shelf.

Download (310KB)
6. Fig. 5. Profile-volumetric images of D-function anomalies at the levels of the upper half-space along profiles within the northeastern part of the Aleutian Basin and the outer part of the Bering shelf.

Download (1MB)
7. Fig. 6. Schematic model of the intersection of the Alaskan part of the Aleutian island-arc system (using data [55]).

Download (249KB)
8. Fig. 7. The structure of subduction zones of the northwest Pacific according to seismic tomography data (using data [38]).

Download (366KB)
9. Fig. 8. Scheme of the main morphostructures and some tectonic elements of the Bering Sea.

Download (1MB)
10. Fig. 9. Reconstruction of the position of the boundary of the Kula-Pacific plates of the Aleutian subduction zone: before the formation of A - according to [64], B - according to [29], D - according to [80] and after formation of B - according to [64], D - according to [29 ], E - according to [80].

Download (3MB)
11. Fig. 10. Changes in the position of the Aleutian Trench, Ma (using the data [64]).

Download (144KB)

Copyright (c) 2019 Russian Academy of Sciences