Application of experimental tectonic methods in petroleum geology on the examples of deposits in Western Siberia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Modeling of the most common types formation of anticlinal and uplift-thrust tectonic structures was carried out with using optical polarization and tectonic-sedimentary methods based on seismic sections analysis of various areas and deposits located in the West Siberian oil and gas basin that were selected for examples. Experiments with using the optical-polarization method allowed us to research the nature of the stress-regime arising in the gelatin models of the sedimentary cover due to the growth of anticlinal blocks and uplift-thrust dislocations. By the level of tangential stresses and orientation of isoclines in optical models, zones of probable tectonogenic fracture and the direction of cracks are predicted.

2D tectonic-sedimentation modeling made possible to explain the mechanism of formation of “rootless” uplifts, zones of subsidence or decompression in sediments, the principle of tectonic “pump” function, and to obtain dependencies between size and shape of uplift, density and opening of cracks formed above, to calculate the value of fracture “porosity”, as well as lateral dimensions of zones of tectonogenic fracturing.

3D tectono-sedimentation modeling allowed to link hydrography of the earth surface of the simulated area with decompression of zones that came to the surface in the models. These zones of decompression can serve as a search sign for exploration of highly productive zones containing hydrocarbon deposits.

Full Text

Restricted Access

About the authors

M. Yu. Zubkov

West-Siberian Geological Center, Ltd

Author for correspondence.
Email: zubkovmyu@mail.ru
Russian Federation, Tyumen

References

  1. Белоусов В.В., Гзовский М.В. Экспериментальная тектоника. М. Недра, 1964, 118 с.
  2. Бондаренко П.М., Лучицкий И.В. Сдвиги и зоны скалывания в тектонических полях напряжений // Экспериментальная тектоника в теоретической и прикладной геологии / И.В. Лучицкий, П.М. Бондаренко (ред.). М.: Наука, 1985. С.159–182.
  3. Гзовский М.В. Основы тектонофизики. М. Наука, 1975. 536 с.
  4. Зубков М.Ю., Бондаренко П.М. Прогноз зон вторичной трещиноватости на основе данных сейсморазведки и тектонофизического моделирования // Геология нефти и газа. 1999. № 11–12. С. 31–40.
  5. Зубков М.Ю., Бондаренко П.М., Трухан Я.А., Лазарев А.Г. Прогноз углеводородных залежей в трещинных коллекторах баженовской и абалакской свит Восточно-Пальяновской площади на основе результатов сейсморазведки и тектонофизического моделирования // Пути реализации нефтегазового потенциала ХМАО / В.А. Волков (ред.). Ханты-Мансийск: Путиведъ, 2000. С.174–187.
  6. Зубков М.Ю. Коллекторы в бажено-абалакском комплексе Западной Сибири и способы их прогноза // Геология нефти и газа. 2014. № 5. С. 58–72.
  7. Зубков М.Ю.Тектоногидротермальные процессы в юрских отложениях Западной Сибири // Геология нефти и газа. 2017. № 1. С. 60–76.
  8. Копыстянский Р.С. Трещиноватость горных пород и ее значение в нефтегазовой геологии. Киев: Наукова думка. 1978, 216 с.
  9. Кузнецов О.Л., Чиркин И.А., Курьянов Ю.А., Шлёнкин С.И., Арутюнов С.Л., Дыбленко В.П., Рогоцкий Г.В. Новые технологи и решение прикладных задач / Сейсмоакустика пористых и трещиноватых геологических сред. М.: Изд-во “ЦИТвП”, 2007. Т. 3. 434 с.
  10. Лучицкий И.В., Бондаренко П.М. Моделирование полей напряжений над интрузивным куполом // Докл. АН СССР. 1974. Т. 216. № 2. С. 316–318.
  11. Осокина Н.Д. Пластичные и упругие низкомодульные материалы для исследования напряжений в земной коре методом моделирования. М.: Изд-во АН СССР, 1963, 196 с.
  12. Патент на изобретение № 2183332 “Способ прогнозирования зон развития вторичных коллекторов трещинного типа в осадочном чехле”. Авт.: М.Ю. Зубков, П.М. Бондаренко. Приоритет от 0.8. 11. 2000.
  13. Фрохт М.М. Фотоупругость. М.: Гостехиздат, 1948. Т. 1. 432 с.
  14. Фрохт М.М. Фотоупругость. М.: Гостехиздат, 1950. Т. 2. 488 с.
  15. Хаимова-Малькова Р.И. Методика исследований напряжений поляризационно-оптическим методом. М.: Наука, 1970. 116 с.
  16. Alai R., Mohamed A.B., Taha M.T.A. Fracture characterization in reservoirs through seismic attributes // First Break. 2014. Vol. 32. No 10. P. 83–92.
  17. Dorn G.A., Dominguez J. Post-stack attribute-based fracture characterization: A case study from the Niobrara shale // First Break. 2017. Vol. 35. No 5. P. 85–89.
  18. Hale D. Methods to compute fault images, extract fault surfaces and estimate fault throws from 3D seismic images // Geophysics. 2012. Vol. 78. No 2. P.33–43.
  19. Jaglan H., Qayyum F., Huk H. Unconventional seismic attributes for fracture characterization // First Break. 2015. Vol. 33. No 3. P.101–109.
  20. Nurhasan A., Davis T.L. Interpretation of wrench faulting and fault-related pressure compartmentalization, Wattenberg Field, Denver Basin Colorado // First Break. 2016. Vol. 34. No 2. P. 53–61.
  21. Williams R.M., Pascual-Cebrian E., Gutmanis J.C., Paton J.S. Delineating fractures in the sub-seismic domain through seismic and image log analysis:a North Sea case study // First Break. 2017. Vol. 35. No 3. P. 49–57.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Seismic-time sections with zones of decompression of sediments over anticlinal structures (a), (c) and rootless uplifts (b), (c).

Download (766KB)
3. Fig. 2. Basic seismic profiles of Palyanovskaya area (a), Salym field (d) and optical-polarization models (b), (c), (d), (e). 1 - the concentration of gelatin; 2 - boundaries and contours: a - between gelatin layers, b - isochromes (levels of tangential stresses); 3 — maximum values ​​of isochrome (≥ 8); 4 - trajectories of normal stresses (σ1) and their broadening (predicted cracks); 5 - trajectories and directions: a - tangential stresses (τmax), b - movements of anticlinal blocks; 6 - ellipsoid strain; 7 - isotropic point

Download (811KB)
4. Fig. 3. A fragment of a seismic-time section of Palyanovskaya area, on which the well is located. 12366 (a), with the results of the interpretation of the optical-polarization model (b), (c). On (c) - inset: a thin section of quartz sandstone, selected from the interval of the Tyumen suite, opened by a SLE. 12366. Reflecting horizons: A - the roof of the foundation, T - the roof of the Tyumen, B - Bazhenov suite. The arrows of the direction of movement of the anticlinal blocks are shown. 1 - the concentration of gelatin; 2 - boundaries and contours: a - between gelatin layers, b - isochromes (levels of tangential stresses); 3 — maximum values ​​of isochrome (≥ 8); 4 - trajectories of normal stresses (σ1) and their broadening (predicted cracks); 5 - trajectories and directions: a - tangential stresses (τmax), b - movements of anticlinal blocks; 6 - ellipsoid strain; 7 - isotropic point

Download (385KB)
5. Fig. 4. Stress fields in a multilayer optical-polarization model containing wedge-shaped layers, deformed by raising a flat anticline (a) - levels of tangential stresses (τmax), (b) - orientation of normal, σ1 and σ3 (solid line) and shearing, τmax (double dashed line), prediction of discontinuities along σ1 (thickened trajectories) and shifts (τmax) in the area of ​​their elevated values. 1 - the concentration of gelatin; 2 - boundaries and contours: a - between gelatin layers, b - isochromes (levels of tangential stresses); 3 — maximum values ​​of isochrome (≥ 8); 4 - trajectories of normal stresses (σ1) and their broadening (predicted cracks); 5 - trajectories and directions: a - tangential stresses (τmax), b - movements of anticlinal blocks; 6 - ellipsoid strain; 7 - isotropic point

Download (302KB)
6. Fig. 5. Fragments of a 2D sedimentation model with rootless uplifts, formed as a result of the successive growth of neighboring anticlinal blocks, before (a) and after (b) its preparation.

Download (283KB)
7. Fig. 6. 2D sedimentation model of the main uplift of the Kalchinskoye field. (a) with an overturned fold and “frozen waves”, between the horizons T and B near the left wall of the model there is an overturned fold resulting from the sliding of a layer of black clay along the elevation wing to its base; (b) - after preparation of “frozen waves”.

Download (289KB)
8. Fig. 7. 2D sedimentation model in the initial state (a), after the growth of the central uplift with the formation of a zone of sediment decomposition above it (b) and a top view of the zone of decompaction that reached the surface of the model (c).

Download (407KB)
9. Fig. 8. The results of the preparation of competent layers of the 2D sedimentation model of the main uplift of the Kalchinsky field with the distribution of discontinuous dislocations (a), the dependence of the linear density of cracks and fracture “porosity” on the amplitude of the uplift (b) and the specific density of cracks above the anticlinal blocks depending on the number of the competent layer for elevations of various sizes (in). Denoted (numbers) numbers of competent layers in the bottom-up direction.

Download (395KB)
10. Fig. 9. Structural and forecasting layout of fractured reservoirs in the Bazhenov and Abalak suite of the eastern part of Yem-Egovskaya area according to the obtained seismic and tectonophysical modeling data. 1–6 - wells: 1 - “dry”; 2 - marginal; 3 - sreddybitnye; 4 - high-yield; 5 - no test data; 6 - design; 7–8 - axes of fracture zones: 7 - maximum; 8 - moderate and weak; 9–11 - zones of destruction and fracture reservoir formation with specific reserves of hydrocarbons: 9 - high, 10 - medium, 11 - low; 12–13 - estimated boundaries: 12 - predicted distribution of fractured reservoirs of the Bazhenov and Abalak suites according to the fracture frequency data in the competent layers corresponding to the Ab and B horizons in tectonic-sedimentation models, 13 - probable cracking according to the values ​​of tangential stresses in the competent layers of the Ab and B horizons B in optical models

Download (956KB)
11. Fig. 10. Optical (a), (c) and sedimentation (b), (d), (e), (e) models of successively growing anticlinal blocks, with varying sizes of fracture zones and openness of cracks in them that have formed above alternatingly growing uplifts .

Download (492KB)
12. Fig. 11. Structural map and the results of three-dimensional 3D sedimentation modeling of growth of the anticlinal block within Kamennaya Square (a) - structural map of a fragment of the Kamennaya area along horizon A, chosen for a three-dimensional sedimentation model, (b) - a photograph of an anticline block imitating this positive structure, (c) - (d) —distribution of fracture dislocations in the competent layers of the three-dimensional sedimentation model, (e) - the dependence of the fractured “porosity” formed in the competent layers of this model on the distance to the top of the anticlinal block. Denoted (numbers) numbers of competent layers in the bottom-up direction.

Download (511KB)
13. Fig. 12. Zones of decomposition of the 3D sedimentation model of the Kamennaya Square. (a) - the zone of decompression, which appeared on the surface of the Stone Square model, (b) - the projection of the zone of decompression on the hydrographic map of the same section of Kamennaya Square. 1 - wells; 2 - grab-shaped dips; 3 - cracks

Download (243KB)

Copyright (c) 2019 Russian academy of sciences