Строение и эволюция восточной части Юго-Западного срединно-океанического Индийского хребта

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Рассмотрено строение и эволюция восточной части Юго-Западного Индийского хребта. На основании геолого-геофизических данных и картографических материалов проведен анализ пространственно-временного изменения морфоструктур хребта, который позволил определить этапы его эволюции и установить участки, различающиеся особенностями тектоники, строения, морфоструктурной сегментации рифтовой зоны и флангов хребта. Показано, что формирование коры в осевой зоне хребта происходило при многократно менявшихся условиях кинематики спрединга, степени влияния горячих точек и вдольосевого изменения температуры подстилающей мантии. Установлены временны́е изменения этих характеристик вдоль простирания рифтовой зоны и рассмотрено их влияние на ее сегментацию и особенности тектонического строения.

Полный текст

Доступ закрыт

Об авторах

А. В. Кохан

ООО «Сварог»

Email: edubinin08@rambler.ru
Россия, 119021, Москва, ул. Россолимо, д.17

Е. П. Дубинин

Московский государственный университет имени М.В. Ломоносова

Автор, ответственный за переписку.
Email: edubinin08@rambler.ru

Музей землеведения

 

Россия, 119991, Москва, Ленинские горы, д.1

Н. М. Сущевская

Институт геохимии и аналитической химии им. В.И. Вернадского РАН

Email: edubinin08@rambler.ru
Россия, 119991, Москва, ул. Косыгина, д.19

Список литературы

  1. Шрейдер А.А., Кашинцев Г.Л. Особенности тектоно-магматической эволюции Юго-западного Индийского срединно-океанического хребта на отрезке 51°–67° в.д. // Океанология. 2010. Т. 50. № 1. С. 121–129.
  2. Allemand P., Brun J. Width of continental rifts and rheological layering of the lithosphere // Tectonophysics. 1991. Vol. 188. No 1–2. P. 63–69.
  3. Baines A., Cheadle M.J., Dick H.B., et al. Evolution of the Southwest Indian Ridge from 55°45´E to 62°E: changes in plate-boundary geometry since 26 Ma // Geochemistry. Geophysics. Geosystems. 2007. Vol. 8. No 6. P. 1 – 31.
  4. Bernard A., Munshy M., Rotstein Y., Sauter D. Refined spreading history at the Southwest Indian Ridge for the last 96 Ma, with the aid of satellite gravity data // Geophysical J. International. 2005. Vol. 162. No 3. P. 765–778.
  5. Cande S., Patriat P. The anticorrelated velocities of Africa and India in the Late Cretaceous and early Cenozoic // Geophysical J. International. 2015. Vol. 200. No 1. P. 227–243.
  6. Cannat M., Rommevaux-Jestin C., Fujimoto H. Melt supply variations to a magma-poor ultra-slow spreading ridge (Southwest Indian Ridge 61° to 69°E) // Geochemistry. Geophysics. Geosystems. 2008. Vol. 4. No.8. P. 1–12.
  7. Cannat M., Rommevaux-Jestin M., Sauter D., Deplus C., Mendel V. Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49°–69°E) // J. Geophysical Research. 1999. Vol. 104. No B10. P. 22825–22843.
  8. Cannat M., Sauter D., Bezos A., et al. Spreading rate, spreading obliquity and melt supply at the ultraslow-spreading Southwest Indian ridge // Geochemistry. Geophysics. Geosystems. 2008. Vol.9. No 4. P.1–26.
  9. Dalton C., Langmuir C., Gale A. Geophysical and geochemical evidence for deep temperature variations beneath mid-ocean ridges // Science. 2014. Vol. 344. No 6179. P. 80–83.
  10. DeMets C., Merkouriev S., Sauter D. High-resolution estimates of Southwest Indian Ridge plate motions, 20 Ma to present // Geophysical. J. International. 2015. Vol. 203. No.3. P. 1495–1527.
  11. Dick H., Lin J., Schouten H. An ultra-slow class of spreading ridge // Nature. 2003. Vol. 426. P. 405–412.
  12. Dubinin E.P., Kokhan A.V., Sushchevskaya N.M. Tectonics and magmatism of ultraslow spreading ridges // Geotectonics. 2013. Vol. 47. No 3. P. 131–155.
  13. Georgen J., Lin J. Plume-transform interactions at ultra-slow spreading ridges: implications for the Southwest Indian Ridge // Geochemistry. Geophysics. Geosystems. 2003. Vol. 4. No 9. P. 1–16.
  14. Gomez O., Briais A., Sauter D., Mendel V. Tectonics at the axis of the very slow spreading Southwest Indian Ridge: Insights from TOBI side-scan sonar imagery // Geochemistry. Geophysics. Geosystems. 2006. Vol. 7. No 5. P.1–24.
  15. Hosford A., Lin J. Structural evolution from a strike-slip transform fault to a non-transform discontinuity: examples from 57°–58°30’E on the SW Indian Ridge and geodynamic implications // USA, San Francisco. AGU Fall Meeting 2002, abstract T52E-04.
  16. Klein E., Langmuir C. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness // J. Geophysical Research. 1987. Vol. 92. № B4. P. 8089–8115.
  17. Leitchenkov G.L., Guseva Yu.B., Gandyukhin V.V., Ivanov S.V., Safonova L.V. Structure of the earth’s crust and tectonic evolution history of the southern Indian Ocean (Antarctica) // Geotectonics. 2014. Vol. 48. No 1. P. 8–28.
  18. MacLeod S., Williams S., Matthews K., Müller R., Qin X. A global review and digital database of large-scale extinct spreading centers // Geosphere. 2017. Vol. 13. No 3. P. 1–39.
  19. Masalu D.C.P. Absolute migration and the evolution of the Rodriguez triple junction since 75 Ma // Tanzanian J. Sciences. 2002. Vol. 28. No. 2. P. 97–104.
  20. Matthews K., Maloney K., Zahirovic S., et al. Global plate boundary evolution and kinematics since the late Paleozoic // Global and Planet. Change. 2016. Vol. 146. P. 226–250.
  21. Matthews K., Müller R., Wessel P., Whittaker J. The tectonic fabric of the ocean basins // J. Geophysical Research. 2011. Vol. 116. No.B12. P.1–28.
  22. Maus S., Barckhausen U., Berkenbosch H., Bournas N., Brozena J., et al. EMAG2: A 2–arc min resolution Earth magnetic anomaly grid compiled from satellite, airborne, and marine magnetic measurements // Geochemistry. Geophysics. Geosystems. 2009. Vol. 10. No 8. P.1–12.
  23. McKenzie D., Jackson J., Priestley K. Thermal structure of oceanic and continental lithosphere // Earth Planet. Sci. Letters. 2005. Vol. 233. No. 3–4. P. 337–349.
  24. Mendel V., Sauter D. Seamount volcanism at the super slow-spreading Southwest Indian ridge between 57°E and 70°E // Geology. 1997. Vol. 25. No. 2. P. 99–102.
  25. Mendel, V., Sauter D., Parson L., Vanney J.-R. Segmentation and morphotectonic variations along a super-slow spreading center: the Southwest Indian ridge (57°E–70°E) // Marine Geophysical Research. 1997. Vol. 19. No.6. P. 505–533.
  26. Meyzen C., Ludden J.N., Humler E., et al. New insights into the origin and distribution of the DUPAL isotope anomaly in the Indian Ocean mantle from MORB of the Southwest Indian ridge // Geochemistry. Geophysical. Geosystems. 2005. Vol. 6. No.11. P.1–34.
  27. Minshull T., Muller M., White R. Crustal structure of the Southwest Indian ridge at 66°E: seismic constraints // Geophysical J. International. 2006. Vol. 166. No.1. P. 135–147.
  28. Muller M., Minshull T., White R. Crustal structure of the Southwest Indian Ridge at the Atlantis II Fracture Zone // J. Geophysical Research. 2000. Vol. 105. No B11. P. 25809–25828.
  29. Niu X., Ruan A., Li J. et al. Along-axis variation in crustal thickness at the ultraslow spreading Southwest Indian Ridge (50°E) from a wide-angle seismic experiment // Geochemistry. Geophysics. Geosystems. 2015. Vol. 16. No.2. P. 468–485.
  30. Ohara Y., Okino K., Snow J. Tectonics of unusual crustal accretion in the Parece Vela basin // Accretionary prisms and convergent margin tectonics in the Northwest Pacific basin / Y. Ogawa, R. Anma, Y. Dilek (eds.). Springer Netherlands. Dordrecht. Modern Approaches in Solid Earth Sciences. 2011. Vol. 8. P.149–168
  31. Patriat P., Sauter D., Munschy M., Parson M. A survey of the Southwest Indian ridge axis between Atlantis II fracture zone and the Indian Triple Junction: regional setting and large scale segmentation // Marine Geophysical Research. 1997. Vol. 19. No.6. P. 457–480.
  32. QGIS 2.14 software package, www.qgis.org. Accessed February 20, 2018.
  33. Rommevaux-Jestin C., Deplus C., Patriat P. Mantle bouguer anomaly along an ultra slow-spreading ridge: implications for accretionary processes and comparison with results from central Mid-Atlantic Ridge // Marine Geophysical Research. 1997. Vol. 19. No.6. P. 481–503.
  34. Ryan W., Carbotte S., Coplan J., et al. Global Multi-Resolution Topography synthesis // Geochemistry. Geophysics. Geosystems. 2009. Vol. 10. No.3. P. 1–9.
  35. Sandwell D., Muller D., Smith W., Garcia E., Francis R. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure // Science. 2014. Vol. 346. No. 6205. P. 65–67.
  36. Sauter D., Cannat M., Roumejon S., et al. Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years // Nature Geoscience. 2013. Vol. 6. P. 314–320.
  37. Sauter D., Carton H., Mendel V., et al. Ridge segmentation and the magnetic structure of the Southwest Indian Ridge (at 50°30´E, 55°30´E and 66°20´E): implications for magmatic processes at ultraslow-spreading centers // Geochemistry. Geophysics. Geosystems. 2004. Vol. 5. No.5. P. 1–25.
  38. Sauter D., Cannat M. The ultraslow spreading Southwest Indian ridge // Diversity of hydrothermal systems on slow spreading ocean ridges / P. Rona, C. Devey, J. Dyment, B. Murton (eds.). USA, Washington. AGU Geophysical Monograph Series. 2010. V. 188. P. 153–173. doi: 10.1029/2008GM000843
  39. Sauter D., Cannat M., Meyzen C., et al. Propagation of a melting anomaly along the ultra-slow Southwest Indian Ridge between 46°E and 52°20’E: interaction with the Crozet hot-spot? // Geophysical J. International. 2009. Vol. 179. No. 2. P. 687–699.
  40. Schlindwein V. Schmid F. Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere // Nature. 2016. Vol. 535. P. 276–279.
  41. Seton M., Whittaker J.M., Wessel P. et al. Community infrastructure and repository for marine magnetic identifications // Geochemistry. Geophysics. Geosystems. 2014. Vol. 15. No. 4. P. 1629–1641.
  42. Seyler M., Cannat M., Mevel C. Evidence for major-element heterogeneity in the mantle source of abyssal peridotites from the Southwest Indian Ridge (52° to 68° E) // Geochemistry. Geophysics. Geosystems. 2003. Vol. 4. No. 2. P. 1–33.
  43. Singh S., Crawford W.C., Carton H. et al. Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field // Nature. 2006. Vol. 442. P. 1029–1032.
  44. Sloan H., Sauter D., Goff J., Cannat M. Abyssal hill characterization at the ultraslow spreading Southwest Indian Ridge // Geochemistry. Geophysics. Geosystems. 2012. Vol.13. No.1. P. 1–15.
  45. Talwani M., Desa M.-A., Ismaiel M., Krishna K. The tectonic origin of the Bay of Bengal and Bangladesh // J. Geophysical Research. Solid Earth. 2016. Vol. 121. No. 7. P. 4836–4851.
  46. Weatherall P., Marks K., Jakobsson M., et. al. A new digital bathymetric model of the world’s oceans // Earth and Space Science. 2015. Vol. 2. No.8. P. 331–345.
  47. White R., McKenzie D., O'Nions R. Oceanic crustal thickness from seismic measurements and rare earth element inversions // J. Geophysical Research. 1992. Vol. 97. No. B13. P. 19683–19715.
  48. Whittaker J., Mṻller R.D., Leitchenkov G,. et al. Major Australian-Antarctic plate reorganization at Hawaiian-Emperor bend time // Science. 2007. Vol. 318. No. 5847. P. 83–86.
  49. Yang Y., Zhao T., Zhou M.-F., Deng X.-G. Isotopically enriched N-MORB: a new geochemical signature of off-axis plume-ridge interaction—a case study at 50°28´ E, Southwest Indian ridge // J. Geophysical Research. 2017. Vol. 122. No. 1. P. 191–213.
  50. Zhang T., Lin J., Gao J. Interactions between hotspots and the Southwest Indian Ridge during the last 90 Ma: implications on the formation of oceanic plateaus and intra-plate seamounts // Science China: Earth Sciences. 2011. Vol. 54. No 8. P. 177–1188.
  51. Zhang T., Lin J., Gao J. Magmatism and tectonic processes in Area A hydrothermal vent on the Southwest Indian Ridge // Sci. China Earth Sciences. 2013. Vol. 54. No.12. P. 1177–1188.
  52. Zhao M., Qiu X., Li Z. et al. Three-dimensional seismic structure of the Dragon Flag oceanic core complex at the ultraslow spreading Southwest Indian Ridge (49°39´E) // Geochemistry. Geophysics. Geosystems. 2013. Vol. 14. No.10. P. 4544–4563.
  53. Zhou H., Dick H. Thin crust as evidence for depleted mantle supporting the Marion Rise // Nature. 2013. Vol. 494. P. 195–200.
  54. http://www.earthchem.org/petdb/search Site version 2.9.2 (Feb 8, 2018). Accessed 25.02.2018.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Cтруктурные элементы Юго-Западного Индийского срединно-океанического хребта и юга центральной части Индийского океана на карте гравитационных аномалий (с использованием данных [35]).

Скачать (400KB)
3. Рис. 2. Строение южного сектора центральной части Индийского океана (с использованием данных [22, 25, 35]).

Скачать (551KB)
4. Рис. 3. Морфометрические характеристики сегментов рифтовой зоны восточной части Юго-Западного Индийского хребта.

Скачать (690KB)
5. Рис. 4. Геолого-геофизические характеристики сегментов рифтовой зоны восточной части Юго-Западного Индийского хребта.

Скачать (567KB)
6. Рис. 5. Эволюция литосферы восточной части Юго-Западного Индийского срединно-океанического хребта в интервале от 68 до 18 млн лет назад (с использованием данных [3, 4, 20]).

Скачать (551KB)
7. Рис. 6. Тектоническая схема литосферы восточной части Юго-Западного Индийского хребта.

Скачать (582KB)

© Российская академия наук, 2019