Relation between Magmatic and Tectonic Processes in the Formation of the Oceanic Crust to the South of the Charlie Gibbs Fracture Zone (North Atlantic)

封面

如何引用文章

全文:

详细

The article presents new data on the structure and relationship of tectonic and magmatic processes during the formation of the Mid-Atlantic Ridge between the Charlie Gibbs and Maxwell fracture zones in the North Atlantic. It is shown that this region is characterized by significant reduction in volcanism, which leads to the excavation of low crustal and upper mantle rocks to the surface. Both individual inland oceanic complexes of the most varied configurations and extended sublatitudinal ridges composed of plutonic rocks are formed. Our analysis showed that this formation setting existed for at least 14‒16 Ma. The formation of most internal oceanic complexes is associated not only with tectonic factors, but also with the serpentinization of peridotites, which leads to a decrease in density, an increase in volume, and, as a result, to the emergence of large ultrabasic massifs, including separated blocks of gabbroids, dolerites, and basalts. Numerous zones of sliding, crushing, abrasion and deformation of rocks indicate tectonic movements. The study region is characterized by numerous non-transform displacements of different amplitudes, which are formed under conditions when relative displacements of oceanic lithosphere segments are realized in wide areas undergoing shear and extension deformations. The morphology of the emerging tectonic-magmatic structures of the region is determined by tectonic factors. The exceptions are cases when the volumes of melts entering the surface in a short period of time are significantly higher than the average for a certain segment of the rift valley. The analysis performed shows the presence within the region of sources of magnetic anomalies that are heterogeneous in nature, both of volcanic origin and associated with manifestations of superimposed tectonic activity.

作者简介

A. Peyve

Geological Institute RAS

编辑信件的主要联系方式.
Email: apeyve@yandex.ru
Russia, 119017, Moscow, Pyzhevsky per. bld. 7

S. Sokolov

Geological Institute RAS

Email: apeyve@yandex.ru
Russia, 119017, Moscow, Pyzhevsky per. bld. 7

A. Razumovsky

Geological Institute RAS

Email: apeyve@yandex.ru
Russia, 119017, Moscow, Pyzhevsky per. bld. 7

A. Ivanenko

Shirshov Institute of Oceanology RAS

Email: apeyve@yandex.ru
Russia, 117997, Moscow, Nakhimovsky prosp. bld. 36

I. Patina

Geological Institute RAS

Email: apeyve@yandex.ru
Russia, 119017, Moscow, Pyzhevsky per. bld. 7

V. Bogolyubskiy

Geological Institute RAS

Email: apeyve@yandex.ru
Russia, 119017, Moscow, Pyzhevsky per. bld. 7

I. Veklich

Shirshov Institute of Oceanology RAS

Email: apeyve@yandex.ru
Russia, 117997, Moscow, Nakhimovsky prosp. bld. 36

A. Denisova

Geological Institute RAS

Email: apeyve@yandex.ru
Russia, 119017, Moscow, Pyzhevsky per. bld. 7

参考

  1. Балуев А.С., Брусиловский Ю.В., Иваненко А.Н. Структура земной коры Онежско-Кандалакшского палеорифта по данным комплексного анализа аномального магнитного поля акватории Белого моря // Геодинамика и тектонофизика. 2018. Т. 9. № 4. С. 1293–1312.
  2. Дмитриев Л.В., Соколов С.Ю., Плечова А.А. Статистическая оценка вариаций состава и Р‒Т условий эволюции базальтов срединно-океанических хребтов и их региональное строение // Петрология. 2006. Т. 14. № 2. С. 1‒22.
  3. Пальшин Н.А., Иваненко А.Н., Алексеев Д.А. Неоднородное строение магнитоактивного слоя Курильской островной дуги // Геодинамика и тектонофизика. 2020. Т. 11. № 3. С. 583‒594.
  4. Пейве А.А. Аккреция океанической коры в условиях косого спрединга // Геотектоника. 2009. № 2. С. 5‒19.
  5. Пейве А.А., Добролюбова К.О., Ефимов В.Н. и др. Особенности строения района разлома Сьерра-Леоне (Центральная Атлантика) // ДАН. 2001. Т. 377. № 6. С. 803‒806.
  6. Пейве А.А., Савельева Г.Н., Сколотнев С.Г., Симонов В.А. Тектоника и формирование океанической коры в области “сухого” спрединга Центральной Атлантики (7°10′‒5° с.ш.) // Геотектоника. 2003. № 2. С. 3‒25.
  7. Пейве А.А., Соколов С.Ю., Иваненко А.Н. и др. Аккреция океанической коры в Срединно-Атлантическом хребте (48°–51.5° с.ш.) в ходе “сухого” спрединга // ДАН. 2023. Т. 508. № 2. С. 155‒163.
  8. Пущаровский Ю.М., Пейве А.А., Разницин Ю.Н. и др. Разлом Зеленого Мыса: вещественный состав пород и структуры (Центральная Атлантика) // Геотектоника. 1988. № 6. С. 18‒31.
  9. Сколотнев С.Г., Пейве А.А., Санфилиппо А. и др. Особенности тектоно-магматических процессов в области взаимодействия исландского плюма и трансформного разлома Байт (Северная Атлантика) // ДАН. 2022. Т. 504. № 1. С. 5‒12.
  10. Сколотнев С.Г., Санфилиппо А., Пейве А.А. и др. Геолого-геофизические исследования разломной зоны Чарли Гиббс (Северная Атлантика) // ДАН. 2021. Т. 497. № 1. С. 5–9.
  11. Abelson M., Agnon A. Mechanics of oblique spreading and ridge segmentation // Earth Planet. Sci. Lett. 1997. Vol. 148. P. 405‒421.
  12. Blackman D.K., Canales J.P., Harding A. Geophysical signatures of oceanic core complexes // Geophys. J. Int. 2009. Vol. 178. P. 593–613.
  13. Cann J.R., Blackman D.K., Smith D.K. et al. Corrugated slip surfaces formed at North Atlantic ridge-transform intersections // Nature. 1997. Vol. 385. P. 329–332.
  14. Cannat M., Lagabrielle Y., Bougault H. et al. Ultramafic and gabbroic exposures at the Mid-Atlantic Ridge: geological mapping in the 15° N region // Tectonophysics. 1997. Vol. 279. No. 1–4. P. 193‒213.
  15. Cannat M., Sauter D., Mendel V. et al. Modes of seafloor generation at a melt-poor ultraslow-spreading ridge // Geology. 2006. Vol. 34. No. 7. P. 605‒608.
  16. Dauteuil O., Brun J. Oblique rifting in a slow-spreading ridge // Nature. 1993. Vol. 361. P. 145–148.
  17. Dick H.J.B., Tivey M.A., Tucholke B.E. Plutonic foundation of a slow spreading ridge segment: Oceanic core complex at Kane Megamullion, 23°30′ N, 45°20′ W // Geochem. Geophys. Geosyst. 2008. Vol. 9. No. 5. P. 1‒44.
  18. Dick H.J., Thompson G., Bryan W.B. Low angle faulting and steady state emplacement of plutonic rocks at ridge-transfoгm intersections // EOS. Trans. AGU. 1981. Vol. 62. P. 406.
  19. Dziewonski A. M., Chou T.-A., Woodhouse J.H. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity // J. Geophys. Res. 1981. Vol. 86. P. 2825‒2852.
  20. Ekström G., Nettles M., Dziewonski A.M. The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes // Phys. Earth Planet. Inter. 2012. Vol. 200–201. P. 1–9.
  21. Escartın J., Mevel C., Petersen S. et al. Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13°20′ N and 13°30′ N, Mid Atlantic Ridge) // Geochem. Geophys. Geosyst. 2017. Vol. 18. P. 1451–1482.
  22. Fournier M., Petit C. Oblique rifting at oceanic ridges: Relationship between spreading and stretching directions from earthquake focal mechanisms // J. Structural Geology. 2007. Vol. 29. P. 201–208.
  23. GEBCO 15" Bathymetry Grid. Vers. 2019, http://www.gebco.net (Accessed September 01, 2022).
  24. Gee J.S., Kent D.V. Source of Oceanic Magnetic Anomalies and the Geomagnetic Polarity Timescale // Treat. Geophys. 2007. Vol. 5. P. 455‒507.
  25. Gracia E., Charlou J., Radford-Knoery J., Parson L. Non-transform offsets along the Mid-Atlantic Ridge south of the Azores (38° N‒34° N) ultramafic exposures and hosting of hydrothermal vents // Earth Planet. Sci. Lett. 2000. Vol. 177. P. 89‒103.
  26. Grindlay N., Fox P., Macdonald K. Second-order ridge axis discontinuities in the south Atlantic: Morphology, structure, and evolution // Marine Geophys. Res. 1991. Vol. 13. P. 21‒49.
  27. Harvard CMT. Harvard University Centroid-Moment Tensor Catalog, http://www.globalcmt.org/ (Accessed October 10, 2018).
  28. Karson J.A., Thompson G., Humphries S.E. et al. Along axis variations in seafloor spreading in the MARK area // Nature. 1987. Vol. 328. P. 681‒685.
  29. Klein E.M., Langmuir C.H. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness // J. Geophys. Res. 1987. Vol. 92. No. B8. P. 8089‒8115.
  30. Lavier L., Buck W.R., Poliakov A.N. Self-consistent rolling-hinge model for the evolution of large-offset low-angle normal faults // Geology. 1999. Vol. 27. P. 1127–1130.
  31. MacLeod, C.J., Searle R.C., Casey J. F. et al. Life cycle of oceanic core complexes // Earth Planet. Sci. Lett. 2009. Vol. 287. P. 333–344.
  32. Merkouriev S., DeMets C. High-resolution Quaternary and Neogene reconstructions of Eurasia‒North America plate motion // Geophys. J. Int. 2014. Vol. 198. P. 366–384.
  33. Mevel C., Cannat M., Gente P. et al. Emplacement of deep crustal and mantle rocks on the west median valley wall of the MARK area (MAR, 23° N) // Tectonophysics. 1991. Vol. 190. P. 31‒53.
  34. Okino K., Curewitz D., Asada M. et al. Preliminary analysis of the Knipovich Ridge segmentation: influence of focused magmatism and ridge obliquity on an ultraslow spreading system // Earth Planet. Sci. Lett. 2002. Vol. 202. P. 275–288.
  35. Sandwell D.T., Smith W.H. Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate // J. Geophys. Res. 2009. Vol. 114. No. B1. P. 1–18.
  36. Sauter D., Cannat M., Rouméjon S. et al. Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years // Nature Geosci. 2013. Vol. 6. P. 314‒320.
  37. Schilling J., Zajac M., Evans R., et al. Petrologic and geochemical variations along the Mid-Atlantic Ridge from 29°N to 73°N // American J. Sci. 1983. Vol. 283. P. 510‒586.
  38. Skolotnev S.G., Sanfilippo A., Peyve A.A. et al. Seafloor spreading and tectonics at the Charlie Gibbs transform system (52°–53° N, Mid Atlantic Ridge): Preliminary results from R/V A. N. Strakhov expedition S50 // Ofioliti. 2021. Vol. 46. No. 1. P. 83‒101.
  39. Taylor B., Crook K., Sinton J.J. Extensional transform zones and oblique spreading centers // J. Geophys. Res. 1994. Vol. 99. No. B10. P. 19707–19718.
  40. USGS Earthquake Composite Catalog. 2021, https://earthquake.usgs.gov/earthquakes/search/ (Accessed February, 2021).
  41. Zheng T., Tucholke B.E., Lin J. Long-term evolution of nontransform discontinuities at the Mid-Atlantic Ridge, 24° N–27°30′ N // J. Geophys. Res.: Solid Earth. 2019. Vol. 124. P. 10 023–10 055.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (2MB)
3.

下载 (2MB)
4.

下载 (832KB)
5.

下载 (3MB)
6.

下载 (1MB)
7.

下载 (2MB)
8.

下载 (2MB)
9.

下载 (2MB)
10.

下载 (2MB)
11.

下载 (1MB)
12.

下载 (2MB)
13.

下载 (2MB)
14.

下载 (522KB)

版权所有 © А.А. Пейве, С.Ю. Соколов, А.А. Разумовский, А.Н. Иваненко, И.С. Патина, В.А. Боголюбский, И.А. Веклич, А.П. Денисова, 2023