Application of Neural Network Technologies for Tectonic Earthquake Forecast

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Successful earthquake prediction includes statistical, tectonic and physical forecasting. The main requirements for this are the establishment of the laws of earthquake mechanics and control of the geodynamic state in the region at the right times. However, resolving this issue faces difficulties of both theoretical and practical nature. Despite the fact that specialists all over the World have collected the fairly complete database on earthquakes, tectonic, electromagnetic, hydrological, etc. signs of earthquakes, the very nature of predicting the future source remains uncertain. The results obtained in the world on statistical forecasting using artificial intelligence give hope for the possibility of predicting earthquakes if we combine tectonic forecasting with the destruction of materials under experimental conditions and numerical modeling under the roof of deep learning neural network technologies. The paper provides the first results of predicting medium-term tectonic earthquakes using artificial intelligence for the Fergana depression in Uzbekistan.

Full Text

Restricted Access

About the authors

I. U. Atabekov

Mavlyanov Institute of Seismology, Academy of Sciences of Republic of Uzbekistan

Author for correspondence.
Email: atabekovi@mail.ru
Uzbekistan, bld. 3, st. Zulfiyakhanum, 100028 Tashkent

A. I. Atabekov

Digital Technology and Artificial Intelligence Research Institute, Ministry of Digital Technologies of Republic of Uzbekistan

Email: atabekovi@mail.ru
Uzbekistan, bld. 17A, BUZ-2, 100125 Tashkent

References

  1. Гвишиани А.Д., Соловьев А.А., Дзебоев Б.А. Проблема распознавания мест возможного возникновения сильных землетрясений: актуальный обзор //Физика земли. 2020. № 1. С. 5–29. doi: 10.31857/S0002333720010044
  2. Као Д.Ч. Исследование и применение нейросетевых технологий в задаче прогнозирования землетрясений (На примере северо-западного района Вьетнама). ‒ Дис. … к. т. н., (РУДН, г. Москва, Россия. 2013), 166 с.
  3. Кособоков В.Г., Щепалина П.Д. Времена повышенной вероятности возникновения сильнейших землетрясений мира: 30 лет проверки гипотезы в реальном времени //Физика Земли/ 2020/ № 1. С. 43–52. doi: 10.31857/S0002333720010068
  4. Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1974 г. ‒ Под. ред. Н.В. Кондорской, Н.В. Шебалина ‒ М: Наука, 1977. 536 с.
  5. Asim K.M., Martínez-Álvarez F., Basit A., Iqbal T. Earthquake magnitude prediction in Hindukush region using machine learning techniques // Nat. Hazards. 2017. Vol. 85. No. 1. P. 471–486. doi: 10.1007/s11069-016-2579-3
  6. Ashif P., Hojjat A. Neural network model for earthquake magnitude prediction using multiple seismicity indicator // International Journal System. 2007. Vol. 17. No. 1. P. 13‒33.
  7. Ashit K.D. Earthquake prediction using artificial neural networks // Int. J. Research and Reviews in Computer Sci. (IJRRCS). 2011. Vol. 2. No. 6. P. 2079‒2557.
  8. Atabekov I.U., Sadykov Yu.M. Stress state of the Earth’s crust in the Western Tien Shan in Central Asia (Uzbekistan): A mathematical stress model // Geotectonics. 2022. Vol. 56. No. 3. P. 306‒320. doi: 10.1134/S0016852122030037
  9. Atabekov I.U., Sadykov Yu.M., Ibragimov R.S. The modern active tectonics of the Fergana depression (Uzbekistan): Based on the results of tectonophysical reconstruction of crustal stresses and mathematical modeling of the velocity field // Geotectonics. 2022. Vol. 56. No. 5. P. 631‒637.
  10. Bangar D., Gupta D., Gaikwad S., Marekar B., Patil J. Earthquake prediction using machine Learning Algorithms // Int. J. of Recent Technology and Engineering. 2020. Vol. 8. Is. 6. P. 4684‒4688. doi: 10.35940/ijrte.E9110.018620
  11. DeVries P.M.R., Viégas F., Wattenberg M., Meade B.J. Deep learning of aftershock patterns following large earthquakes // Nature. 2018. Vol. 560. P. 632–634. Doi: https://doi.org/10.1038/s41586-018-0438-y
  12. Kuyuk H.S., Susumu O. Real time classification of earthquake using deep learning // Procedia Computer Sci. 2018. Vol. 140. P. 298‒305. doi: 10.1016/j.proc.2018.10.316
  13. Mahmoudi J., Arjomand M.A., Rezaei M., Mohammadi M.H. Predicting the earthquake magnitude using the multilayer perceptron neural network with two hidden layers // Civil Engineer. J. 2016. Vol. 2. No. 1. P. 1–12.
  14. Panakkat A., Adeli H. Recurrent neural network for approximate earthquake time and location prediction using multiple seismicity indicators // Computer-Aided Civil and Infrastructure Engineering .2009. Vol. 24. No. 4. P. 280–292.
  15. Rouet-Leduc B., Hulbert C., Lubbers N., Barros K., Humphreys C.J., Johnson P.A. Machine learning predicts laboratory earthquakes // Geophys. Res. Lett. 2017. Vol. 44. P. 9276–9282. Doi: https://doi.org/10.1002/2017GL074677
  16. Salam M., Ibrahim L., Abdelminaam D. Earthquake prediction using hybrid machine learning techniques // International Journal of Advanced Computer Science and Applications. 2021. Vol. 12. No. 5. doi: 10.14569/IJACSA.2021.0120578
  17. Shcherbakov R., Zhuang J., Zöller G., Ogata Y. Forecasting the magnitude of the largest expected earthquake // Nature Communications. 2019. Vol. 10. Art. 4051. Doi: https://doi.org/10.1038/s41467-019-11958-4
  18. Shi Y., Zhang B., Zhang S., Zhang H. On numerical earthquake prediction // Earthquake Sci. 2014. Vol. 27. No. 3. P. 319–335. doi: 10.1007/s11589-014-0082-z
  19. Sholz C.H. A physical interpretation of the Haicheng earthquake prediction // Nature. 1977. Vol. 267. P. 121‒124.
  20. Vardaan K., Bhandarkar T., Satish N., Sridhar S., Sivakumar R., Ghosh S. Earthquake trend prediction using long short-term memory RNN // International Journal of Electrical and Computer Engineering (IJECE). 2019. Vol. 9. No. 2. P. 1304‒1312. doi: 10.11591/ijece.v9i2.
  21. Wang Q., Guo Y., Yu L., Li P. Earthquake prediction based on spatio-temporal data mining: An LSTM network approach // Transactions on Emerging Topics in Computing (IEEE). 2020. doi: 10.1109/TETC.2017.2699169
  22. Space image, https//topographic-map.com (Accessed January, 2024).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Topographic map of the Fergana Depression and its surroundings (according to [22]).

Download (1MB)
3. Fig. 2. The territory of the Fergana Depression, divided into 17 zones, with active faults indicated. Seismic events are shown: real (red circles); accurately predicted by the LSTM algorithm (green circles).

Download (621KB)

Copyright (c) 2024 Russian Academy of Sciences