The Main Stages of the Fram Strait Formation in the Neogene: Analysis of Geological and Geophysical Data

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The opening of the Fram Strait began in the Early Miocene (~19.5 Ma) as a result of movements of the North American and Eurasian lithospheric plates, which resulted in the formation of the narrowest segment of the strait, the Lena Trough. In the Miocene (~19.5–9.8 Ma), the opening of the central part of the Fram Strait led to formation of the central and northwestern parts of the Molloy Basin, which had an extended basement consisting of blocks of the West Spitsbergen fold-and-thrust belt. In the Late Miocene (~9.8 Ma), in the central part of the Fram Strait, a jump in the axis of its opening to the east occurred in the segments between the Molloy and Spitsbergen transform faults, and spreading began in the northernmost segment of the Knipovich Ridge. In the Late Miocene (~9.8 Ma), the deep-sea exchange of waters between the North Atlantic and the Arctic Ocean took place west of the Barents Sea continental “fragments” – the Hovgaard Ridge and Mount Hovgaard. In the Late Miocene (~6.7 Ma), the Molloy Basin began to open, which coincides with the beginning of the continuous subsidence of the Hovgaard Ridge, which was in subaerial conditions, and with a three-fold increase in the sedimentation rate in the central part of the Molloy Basin. In the Late Miocene‒Early Pleistocene (~9.8‒1.8 Ma), a warm current from the North Atlantic could have passed along the eastern continental margin of Greenland and, at the peak of its maximum intensity, ensured the existence of biological diversity in the conditions of the “polar desert” and “polar night” in the north‒northeast of Greenland and the shallow sea areas adjacent to the coast.

The modern direction of the cold and warm currents in the Fram Strait could have formed in the Early Pleistocene (~1.8 Ma) and be associated with the opening of the northernmost segment of the Knipovich Ridge.

Full Text

Restricted Access

About the authors

A. V. Zayonchek

Geological Institute of Russian Academy of Sciences (GIN RAS)

Author for correspondence.
Email: a_zayonchek@mail.ru
Russian Federation, bld. 7, Pyzhevsky per., 119017 Moscow

S. Yu. Sokolov

Geological Institute of Russian Academy of Sciences (GIN RAS)

Email: a_zayonchek@mail.ru
Russian Federation, bld. 7, Pyzhevsky per., 119017 Moscow

A. V. Soloviev

Geological Institute of Russian Academy of Sciences (GIN RAS); All–Russian Research Geological Oil Institute

Email: a_zayonchek@mail.ru
Russian Federation, bld. 7, Pyzhevsky per., 119017 Moscow; bld. 36, Shosse Entuziastov, 105118 Moscow

E. G. Vasilieva

SEUS Geoservices AS

Email: a_zayonchek@mail.ru
Norway, Hoffsjef Løvenskiolds vei 25B, 0382, Oslo

S. I. Shkarubo

Marine Arctic Geological Expedition, JSC (MAGE)

Email: a_zayonchek@mail.ru
Russian Federation, bld. 26, st. Sofia Perovskaya, 183038 Murmansk

References

  1. Батурин Д.Г., Нечхаев С.А. Глубинное строение Шпицбергенского краевого плато северо-восточной части Гренландского моря // ДАН СССР. 1989. Т. 306. № 4. С. 925–930.
  2. Гусев Е.А., Шкарубо С.И. Аномальное строение хребта Книповича // Российский журнал Наук о Земле. Т.3. № 2. 2001. С. 145–161. doi: 10.2205/2001ES000056
  3. Зайончек А.В., Соколов С.Ю., Соловьев А.В. Эволюция Евразийского бассейна в дочетвертичное время: результаты интерпретации сейсмического профиля ARC1407A // Геотектоника. 2023. № 6. С 3–42. doi: 10.31857/S0016853X23060085
  4. Казанин Г.С., Тарасов Г.А., Федухина Т.Я., Шлыкова В.В., Матишов Г.Г. Западно-Шпицбергенская континентальная окраина: геологическое строение, нефтегазоносность // ДАН. 2015. Т. 460. №2. С 3–42. doi: 10.7868/S086956521502019X
  5. Кохан А.В., Дубинин Е.П., Грохольский А.Л., Абрамова А.С. Кинематика и особенности морфоструктурной сегментации хребта Книповича // Океанология. 2012. Т. 52. № 5. С. 744–756.
  6. Соколов С.Ю. Тектоническая эволюция хребта Книповича по данным аномального магнитного поля // ДАН. 2011. Т. 437. № 3. С. 378–383.
  7. Пейве А.А., Чамов Н.П. Основные черты тектоники хребта Книповича (Северная Атлантика) и история его развития на неотектоническом этапе // Геотектоника. 2008. № 1. С. 38–57.
  8. Шипилов Э.В. Базальтоидный магматизм и проблема газоносности Восточно-Баренцевского мегабассейна // Арктика: экология и экономика. 2018. Т. 30. № 2. С. 94‒106. doi: 10.25283/2223-4594-2018-2-94-106
  9. Amundsen I.M.H., Blinova M., Hjelstuen B.O., Mjelde R., Haflidason H. The Cenozoic western Svalbard margin: sediment geometry and sedimentary processes in an area of ultraslow oceanic spreading // Marin. Geophys. Res. 2011. Vol. 32. N 4. P. 441–453. doi: 10.1007/s11001-011-9127-z
  10. Backman J., Jakobsson M., Frank M., Sangiorgi F., Brinkhuis H., Stickley C., O’Regan M., Lovlie R., Palike H, Spofforth D., Gattacecca J., Moran K., King J., Heil C. Age model and core-seismic integration for the Cenozoic ACEX sediments from the Lomonosov Ridge // Paleoceanography. 2008. Vol. 23. P. 1–15. Doi: https://doi.org/10.1029/2007PA001476
  11. Balmino G., Vales N., Bonvalot S. and Briais A. Spherical harmonic modeling to ultra-high degree of Bouguer and isostatic anomalies // J. Geodes. July 2012. Vol. 86. No. 7. P. 499‒520. Doi: https://doi.org/10.1007/s00190-011-0533-4
  12. Breivik A., Mjelde R., Grogan P., Shimamura H., Murai Y., Nishimura Y. Crustal structure and transform margin development south of Svalbard based on ocean bottom seismometer data // Tectonophysics. 2003. Vol. 369. P. 37–70. Doi: https://doi.org/10.1016/S0040-1951(03)00131-8
  13. Crane K., Doss S., Vogt P., Sundvor E., Cherkashov I.P., Devorah J. The role of the Spitsbergen shear zone in determining morphology, sedimentation and evolution of the Knipovich Ridge // Marin. Geophys. Res. 2001. Vol. 22. P. 153–205. doi: 10.1023/A:1012288309435
  14. Czuba W., Ritzmann O., Nishimura Y., Grad M., Mjelde R., Guterch A., Jokat W. Crustal structure of the continent–ocean transition zone along two deep seismic transects in north−western Spitsbergen // Polish Polar Res. 2004. Vol. 25. No. 3-4. P. 205–221.
  15. Dumais M.-A., Gernigon L., Olesen O., Johansen S.E., Bronner M. New interpretation of the spreading evolution of the Knipovich Ridge derived from aeromagnetic data // Geophys. J. Int. 2021. Vol. 224. P. 1422–1428. Doi: https://doi.org/10.1093/gji/ggaa527
  16. Dumais M.-A., Gernigon L., Olesen O., Lim A., Johansen S.E., Brönner M. Crustal and thermal heterogeneities across the Fram Strait and the Svalbard margin // Tectonics. 2022. Vol. 41. e2022TC007302. P. 1‒29. Doi: https://doi.org/10.1029/2022TC007302
  17. Ehlers B., Jokat W. Subsidence and crustal roughness of ultra-slow spreading ridges in the northern North Atlantic and the Arctic Ocean // Geophys. J. Int. 2009. Vol. 177. No.2. P. 451–462. doi: 10.1016/j.tecto.2015.12.002
  18. Engen Ø., Faleide J.I., Dyreng T.K. Opening of the Fram Strait gateway: A review of plate tectonic constraints // Tectonophysics. 2008. Vol. 450. P. 51–69. Doi: https://doi.org/10.1016/j.tecto.2008.01.002
  19. Gruetzner J., Matthiessen J., Geissler W.H., Gebhardt A.C., Schreck M. A revised core-seismic integration in the Molloy Basin (ODP Site 909): Implications for the history of ice rafting and ocean circulation in the Atlantic‒Arctic gateway // Global and Planet. Change. 2022. Vol. 215. Article № 103876. doi: 10.1016/j.gloplacha.2022.103876
  20. Harland W.B. The Geology of Svalbard – Ed. by W.B. Harland, (Geol. Soc. London, UK. 1998. Geol. Surv. Mem. Is.17), 521 p.
  21. Jakobsson M., Backman J., Rudels B., Nycander J., Frank M., Mayer L., Jokat W., Sangiorgi F., O’Regan M., Brinkhuis H., King J., Moran K. The early Miocene onset of a ventilated circulation regime in the Arctic Ocean // Nature. 2007. Vol. 447. P.986‒990. Doi: 10.1038/nature05924' target='_blank'>https://doi: 10.1038/nature05924
  22. Jakobsson M., Mayer L.A., Bringensparr C. et al. The International Bathymetric Chart of the Arctic Ocean. Version 4.0 // Scientific Data. 2020. Vol. 176. No. 7. Doi: https://doi.org/10.1038/s41597-020-0520-9
  23. Faleide J.I., Solheim A., Fiedler A., Hjelstuen B.O., Andersen E. S., Vanneste K. Late Cenozoic evolution of the western Barents Sea‒Svalbard continental margin // Global Planet. Change. 1996. Vol. 12. P. 53–74. doi: 10.1016/0921-8181(95)00012-7
  24. Kjær K.H., Pedersen M.W., De Sanctis B., De Cahsan B., Korneliussen T. S., Michelsen C.S., Sand K.K., Jelavić S., Ruter A.H., Schmidt A.M.A., Kjeldsen K.K., Tesakov A.S., Snowball Ian, Gosse J.C., Alsos I.G., Wang Y., Dockter C., Rasmussen M., Jørgensen M.E., Skadhauge B., Prohaska A., Kristensen J.Å., Bjerager M., Allentoft M.E., Coissac E., PhyloNorway Consortium, Rouillard A., Simakova A., Fernandez-Guerra A., Bowler C., Macias-Fauria M., Vinner L., Welch J.J., Hidy A.J., Sikora M., Collins M.J., Durbin R., Larsen N.K., Willerslev E. A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA // Nature. 2022. Vol. 612. P. 283–296. Doi: https://doi.org/10.1038/s41586-022-05453-y
  25. Knies J., Mattingsdal R., Fabian K., Grøsfjeld K., Baranwal S., Husum K., De Schepper S., Vogt C., Andersen N., Matthiessen J., Andreassen K., Jokat W., Nam S.-I., Gaina C. Effect of early Pliocene uplift on late Pliocene cooling in the Arctic–Atlantic gateway // Earth Planet. Sci. Lett. 2014. Vol. 387. P.132–144. Doi: https://doi.org/10.1016/j.epsl.2013.11.007
  26. Knies J., Gaina, C. Middle Miocene ice sheet expansion in the Arctic: views from the Barents Sea // Geochem. Geophys. Geosyst. (G3). 2008. Vol. 9. Is. 2. Q02015. Doi: https://doi.org/10.1029/2007GC001824
  27. Knies J., Matthiessen J., Vogt C., Laberg J.S., Hjelstuen B.O., Smelror M., Larsen E., Andreassen K., Eidvin T., Vorren T.O. The Plio-Pleistocene glaciation of the Barents Sea–Svalbard region: a new model based on revised chronostratigraphy // Quaternary Sci. Rev. 2009. Vol. 28. No. 9. P. 812–829. Doi: https://doi.org/10.1016/j.quascirev.2008.12.002
  28. Krysiński L., Grad M., Mjelde R., Czuba W. and Guterch A. Seismic and density structure of the lithosphere−asthenosphere system along transect Knipovich Ridge−Spitsbergen−Barents Sea – geological and petrophysical implications // Polish Polar Res. 2013. Vol. 34. № 2. P. 111–138. doi: 10.2478/popore−2013−0011
  29. Kvarven T., Hjelstuen B.O. Mjelde R. Tectonic and sedimentary processes along the ultraslow Knipovich spreading ridge // Marin. Geophys Res. 2014. Vol. 35. P. 89–103. Doi: https://doi.org/10.1007/s11001-014-9212-1
  30. Merkouriev S., DeMets C. High-resolution Quaternary and Neogene reconstructions of Eurasia‒North America plate motion // Geophys. J. Int. 2014. Vol. 198. P. 366–384. Doi: https://doi.org/10.1093/gji/ggu142
  31. Myhre A.M., Thiede J., Firth J.V., Johnson G.L., Ruddiman W.F. Ocean Drilling Program. – In: Proceedings ODP, (College Station. Texas A&M Univ., USA. 1995. Initial Rep. No. 151).
  32. Lasabuda A.P.E., Johansen N.S., Laberg J.S., Faleide J.I., Senger K., Rydningen T.A., Hanssen A. Cenozoic uplift and erosion of the Norwegian Barents Shelf – A review // Earth-Sci. Rev. 2021. Vol. 217. P.1‒35. Doi: 10.1016/j.earscirev.2021.103609' target='_blank'>http://doi: 10.1016/j.earscirev.2021.103609
  33. Libak A., Eide C. H., Mjelde R., Keers H., Flüh E.R. From pull-apart basins to ultraslow spreading: Results from the western Barents Sea Margin // Tectonophysics. 2012. Vol. 514–517. P. 44–61. Doi: https://doi.org/https://doi.org/10.1016/j.tecto.2011.09.020
  34. Ogg J. Geomagnetic polarity time scale. – In: The Geologic Time Scale‒2020. – Ed.by F.M. Gradstein, J.G. Ogg, M.D. Schmitz, G.M. Ogg, (Elsevier Sci. Oxford. UK. 2020. Ch.5), P. 159‒192.
  35. Polteau S., Hendriks B.W., Planke S., Ganerod M., Corfu F., Faleide J.I., Midtkandal I., Svensen H.S., Myklebust R. The Early Morgan Cretaceous Barents Sea sill complex: Distribution,40Ar/39Ar geochronology, and implications for carbon gas formation // Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016. Vol. 441. P. 83–95. Doi: https://doi.org/10.1016/j.palaeo.2015.07.007
  36. Ritzmann O., Jokat W., Mjelde R., Shimamura H. Crustal structure between the Knipovich Ridge and the Van Mijenfjorden (Svalbard) // Marin. Geophys. Res. 2002. Vol. 23. P. 379–401. Doi: https://doi.org/10.1023/B:MARI.0000018168.89762.a4
  37. Vogt P.R. Geophysical and geochemical signatures and plate tectonics. –In: The Nordic Seas. – Ed.by B.G. Hurdle (Springer, NY. USA. 1986), P. 413–662.
  38. Vogt P.R., Taylor P.T., Kovacs L.C., Johnson G.L. Detailed aeromagnetic investigation of the Arctic Basin // J. Geophys. Res. 1979. Vol. 84 (B3). P. 1071–1089.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Comparison of the results of identification of the axes of linear magnetic anomalies (LMA) in the Fram Strait (according to [1, 3, 4, 6, 12, 14, 19, 24, 27, 33, 36]). (a) - LMA position (according to [18]), based on the IBCAO v.4 digital elevation model with the removed Greenland ice sheet (according to [22]); (b) - LMA position (according to [15]), based on the digital model of the anomalous magnetic field (according to [15]). Shown (purple frame) is the theoretical position of the axes of linear magnetic anomalies. Designated: CG - Gakkel Ridge; KHK - Knipovich Ridge; KhM - Mona Ridge; KhML - Molloy Ridge; TL - Lena Trough; XX – Hovgard Ridge; GH – Hovgard Mountain; GRH – Greenland Ridge; NH – neovolcanic ridges in the Knipovich Rift Valley; PS – Svyatogor Uplift; VM – Molloy Depression; KB – Borea Basin; TRSh – Spitsbergen Transform Fault; TRM – Molloy Transform Fault; RZH – Horsund Fracture Zone; 2A–24B – axes of linear magnetic anomalies; K – contour of modern aeromagnetic survey; I – local positive anomalies of the anomalous magnetic field (AMP) above intrusive objects (maximum AMP values (160–1600 nT), 2A–24B – LMA axes). 1 – 400 m isobath; 2-5 — position: 2 — ODP 908 and ODP 909 drilling wells, 3 — modern spreading axis based on bathymetric data, 4 — deep seismic profiles, 5 — continent-ocean transition zone based on seismic data; 6-7 continent-ocean boundaries: 6 — according to [18], 7 — according to [15, 16]; 8 — beginning of continent-ocean transition zone from the continental margin side (according to [18]); 9-10 — drift lines and their numbers; 11 — theoretical position of chrons (name, age in Ma) on drift lines

Download (1MB)
3. Fig. 2. Theoretical positions of the axes of linear magnetic anomalies (according to [1, 12, 14, 16, 19, 22, 24, 27, 33, 36]). (a) – Pseudo-shadow representation of the IBCAO v.4 digital elevation model with the Greenland ice sheet removed (according to [22]); (b) – anomalous magnetic field (according to [15], with modifications), superimposed on the pseudo-shadow representation of the IBCAO v.4 digital elevation model with the Greenland ice sheet removed (according to [22]). Designations: CBM – central Molloy Basin; WBM – western Molloy Basin; NWBM – northwestern Molloy Basin; GKO – assumed position of the continent-ocean boundary; CG – Gakkel Ridge, KH – Knipovich Ridge; TL – Lena Trough; XX – Hovgard Ridge; GH – Hovgard Mountain; GRH – Greenland Ridge; TRF – Spitsbergen Transform Fault Zone; TRM – Molloy Transform Fault Zone; HFZ – Horsund Fracture Zone. Shown (Arabic numerals in circles) are the theoretical positions of the axes of linear magnetic anomalies (chron, Ma): 2y – (2ny, ~1.8); 3A – (3An.2no, ~6.7); 5y – (5n.1ny, ~9.8); 5AD – (5ADno, ~14.6); 6 – (6no, ~19.5). 1 – position of drilling boreholes ODP 908 and ODP 909; 2 – isobath, 400 m; 3-5 – position: 3 – seismic profiles of the reflection CMP (AWI20020300, MAGE 88229), 4 – continent-ocean transition zones according to deep seismic exploration data, 5 – inferred faults mapped according to bathymetric and magnetometric data; 6 – direction and width of the opening of the central part of the Molloy Basin during the period (Ma): C6no (~19.5) – C5n.1ny (~9.8)

Download (902KB)
4. Fig. 3. Plate tectonic reconstruction with an age of ~9.8 million years (C5n.1ny). (a) – Pseudo-shadow representation of the IBCAO v.4 digital elevation model with the Greenland ice sheet removed (according to [22]); (b) – anomalous magnetic field (according to [15], with modifications), superimposed on the pseudo-shadow representation of the IBCAO v.4 digital elevation model with the Greenland ice sheet removed (according to [22]). Designations: XX – Hovgaard Ridge, GH – Hovgaard Mountain, TRF – Spitsbergen Transform Fault, TRM – Molloy Transform Fault, GKO – continent-ocean boundary (according to [18] with modifications), theoretical position of the axes of the linear magnetic anomaly 6 (6no, ~19.5 Ma), theoretical position of the spreading axis at chron 5u (5n.1ny, ~9.8 Ma). 1 – isobath, 400 m; 2 – position of the supposed faults mapped from bathymetric and magnetometric data; 3 – deposits of the Cap Copenhagen Formation; 4–5 – supposed position and direction of currents: 4 – warm, 5 – cold

Download (935KB)
5. Fig. 4. Interpretation of seismic time sections. Shown are the curves (line): anomalous magnetic field (red) (after [15], with modifications); gravity anomalies in the Bouguer reduction (purple), extracted from the value matrices (after [11]). For the position of the profiles, see Fig. 2. (a) – Seismic profile AWI20020300 (after [19], with modifications); (b) – seismic profile MAGE88229. Seismic horizons MB02–MB09 are designated (after [19], with additions): P – bottom relief of the rift valley of the Knipovich Ridge extracted from the value matrix of the IBCAO v.4 relief model [22]; TLMA – theoretical position of the axes of linear magnetic anomalies; TV – theoretical age of the oceanic crust; Fk – position of the acoustic “continental” basement; Fo – position of the “oceanic” basement; KO – contrast reflections below the surface of the acoustic “continental” basement.

Download (924KB)
6. Fig. 5. Comparison of the results of seismic data interpretation by crust type in the central part of the Fram Strait (AWI99200 and AWI99400 [14], AWI20020300 [19], AWI20020500 [17], with modifications and additions). The digital elevation model IBCAO v.4 with the removed Greenland ice sheet was used as a basis (according to [22]). Designations: CBM - central Molloy Basin; WBM - western Molloy Basin; NWBM - northwestern Molloy Basin; GKO - assumed position of the continent-ocean boundary; XX - Hovgaard Ridge; GH - Hovgaard Mountain; TRSH - Spitsbergen transform fault; TRM - Molloy transform fault; GKO – continent-ocean boundary (after [18], with modifications). The theoretical positions of the axes of linear magnetic anomalies (Ma) are indicated (Arabic numerals in circles): 2y – (2ny, ~1.8); 3A – (3An.2no, ~6.7); 5y – (5n.1ny, ~9.8); 5AD – (5ADno, ~14.6); 6 – (6no, ~19.5). 1 – position of drilling boreholes ODP 908 and ODP 909 (after [19,24]); 2 – isobath, 400 m; 3 – supposed position of the fault separating the northern segment of the Knipovich Ridge – the Molloy Basin from the south; 3–5 – types of the earth's crust along the lines of seismic profiles: 3 – continent–ocean transition zone, 4 – continental, 5 – oceanic; 6 – intensely stretched crust of the West Spitsbergen folded belt; 7 – supposed intensely stretched crust of the West Spitsbergen folded belt; 8 – continental fragment of the Hovgaard Ridge

Download (904KB)

Copyright (c) 2025 Russian academy of sciences