Hydrocarbon potential of deeply buried reservoirs in the Astrakhan oil and gas accumulation zone: problems and solutions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Global experience in oil exploration and the discovery of the Tupi field in Brazil and the Tiber field in the Gulf of Mexico in the last decade have confirmed the existence of giant oil fields with abnormally high formation pressures at depths of 10 km or greater. Until recently, the discovery of large oil accumulations in deeply buried reservoirs was considered as theoretically impossible. This work suggests that giant oil accumulations at great depths (6–10 km) should be considered important hydrocarbon exploration targets in the Russian Federation and the countries of Eurasian Economic Union. The first-priority oil and gas exploration targets at great depths are deeply buried horizons of the sedimentary cover of the Precaspian basin, whose subsalt hydraulic system is characterized by ubiquitous abnormally high formation pressures. The deeply buried reservoirs in the Astrakhan oil and gas accumulation zone are considered the most promising for the discovery of giant oil accumulations.

Full Text

Restricted Access

About the authors

Yu. A. Volozh

Geological Institute, Russian Academy of Sciences

Author for correspondence.
Email: yvolozh@yandex.ru
Russian Federation, Moscow

G. N. Gogonenkov

All Russia Geological Oil Institute (VNIGNI)

Email: yvolozh@yandex.ru
Russian Federation, Moscow

S. V. Delia

LLC Ritek – OJSC LUKOIL

Email: yvolozh@yandex.ru
Russian Federation, Moscow

O. A. Korchagin

OJSC Rosgeologiya

Email: yvolozh@yandex.ru
Russian Federation, Moscow

A. Yu. Komarov

LLC Gasprom dobycha Astrakhan

Email: yvolozh@yandex.ru
Russian Federation, Astrakhan

V. V. Rybal`chenko

OJSC Gasprom

Email: yvolozh@yandex.ru
Russian Federation, Moscow

M. A. Sibilev

OJSC LUKOIL

Email: yvolozh@yandex.ru
Russian Federation, Moscow

V. P. Steninzon

JSC Astran

Email: yvolozh@yandex.ru
Russian Federation, Astrakhan

V. V. Pykhalov

LLC Oktopus

Email: yvolozh@yandex.ru
Russian Federation, Astrakhan

I. A. Titarenko

Lower-Volga Research Institute of Geology and Geophysiscs (NVNIIGG)

Email: yvolozh@yandex.ru
Russian Federation, Saratov

A. K. Tokman

LLC Astrakhanskaya Neftyanya Kompaniya – JSC EuroChem

Email: yvolozh@yandex.ru
Russian Federation, Moscow

References

  1. Астраханский карбонатный массив: строение и нефтегазоносность / Ред. Ю.А. Волож, В.С. Парасына. М.: Научный мир, 2008. 221с.
  2. Баталин О.Ю., Вафина Н.Г. Конденсационная модель образования залежей нефти и газа. М.: Наука, 2008. 248 с.
  3. Бочкарев А.В, Бочкарев В.А. Катагенез и прогноз нефтегазоносности недр. / М.: ВНИИОЭНГ, 2006. 321 с.
  4. Буш В.А., Писаренко Ю.А. Пермский “мессинский кризис” в Прикаспийской впадине: погребенные подводные каньоны в кровле подсолевых отложений // Фундаментальные проблемы геотектоники / Отв. ред. Ю.В. Карякин. Материалы XL тектонического совещания “Фундаментальные проблемы геотектоники. Области активного тектогенеза в современной и древней истории Земли”, Москва, 30 января–3 февраля 2007 г. М.: ГЕОС, 2007. Т.1. С. 123–126.
  5. Варшавская И.Е., Волож Ю.А., Дмитриевский А.Н., Леонов Ю.Г., Милетенко Н.В., Федонкин М.А. Новая концепция развития ресурсной базы углеводородного сырья // Вестник РАН. 2012. Т.82. № 2. С. 99–109.
  6. Волож Ю.А., Дмитриевский А.Н., Леонов Ю.Г., Милетенко Н.В., Ровнин Л.И. О стратегии очередного этапа нефтепоисковых работ в Прикаспийской впадине // Геология и геофизика. 2009. Т. 50. № 4. С. 309–315.
  7. Волож Ю.А., Леонов Ю.Г., Антипов М.П., Быкадоров В.А. Строение и перспективы нефтегазоносности зоны сочлинения Прикаспийской впадины со Скифской и Западно-Туранской плитой // Прикаспийская впадина актуальные проблемы геологии и нефтегазоносности / Атырау: Казахстанское общество нефтяников-геологов, 2012. С. 50–64 (Тр. КОНГ. Вып.1).
  8. Гожик П.Ф., Краюшкин В.А., Клочко В.П. О перспективах нефтегазового поиска на глубине 8000–12500 м в Днепровско-Донецкой впадине // Докл. НАН Украины. 2007. № 4. С. 121–124.
  9. Дмитриевский А.Н., Баланюк И.Е., Высоцкий В.И., Каракин А.И. Полигенная модель формирования битуминозных поясов планеты // Дегазация Земли и генезис нефтегазовых месторождений / Отв. ред. А.Н. Дмитриевский, Б.М. Валяев. М.: ГЕОС, 2012. С. 380–399.
  10. Леонов Ю.Г., Волож Ю.А., Антипов М.П., Быкадоров В.А., Хераскова Т.Н. Консолидированная кора Каспийского региона: опыт районирования. М.: ГЕОС, 2010. 63 с. (Тр. ГИН. Вып. 593).
  11. Коваленко В.С., Коротков Б.С. Состояние и развитие геолого-разведочных работ на глубокозалегающие горизонты в Прикаспийской впадине и ее обрамлении // Х1 Координационное совещание ПАО “Газпром”. М.: ИРЦ Газпром, 2006. С. 22–29.
  12. Комаров А.Ю., Тинакин О.В., Ильин А.Ф., Захарчук В.А. Особенности распределения нефтегазоносных комплексов терригенного девона на Астраханском своде // Геология нефти и газа. 2009. № 3. С. 36–40.
  13. Куандыков Б.М., Волож Ю.А. Изучение глубокозалегающих горизонтов Прикаспийской впадины // Нефтегазоносные бассейны Казахстана и перспективы их освоения / Ред. Б.М. Куандыков. Алма-Аты: КОНГ, 2015. С. 53–60.
  14. Медведев П.В., Попович С.В., Голиченко Г.В. и др. Геологическое строение, история формирования и перспективы нефтегазоносности подсолевых палеозойских отложений западной части Прикаспийской впадины // Перспективы нефтегазоносности Нижнего Поволжья и Азово-Каспийского региона / Ред. А.М. Репей. Волгоград: Изд. ЛУКОЙЛНИПИморнефть, 2005. С. 35–53. (Тр.ВологоградНИПИнефть. Вып. 64.)
  15. Оренбургский тектонический узел: строение и нефтегазоносность / Ред. Ю.А. Волож, В.С. Парасына. М.: Научный мир, 2013. 213 с.
  16. Писаренко Ю.А. Позднепалеозойская тектоно-седиментационная модель Прикаспийского региона и ее значение для определения геолого-разведочных работ на нефть и газ. Автореф. … докт.-геол. мин. наук. Саратов: СарГУ, 2005. 50 с.
  17. Рабкин Ф.С., Абилгалиев М.Ж., Аксаева Ф.К. и др. О природе структурных инверсий полей пластовых давлений в подсолевых отложениях Прикаспийской впадины. / Извест. АН КазССР. Сер. геол. 1990. № 1. С. 9–16.
  18. Стратиграфия и региональная корреляция подсолевых нефтегазоносных комплексов Прикаспийской впадины / Ред. А.К. Замаренов. М.: Недра, 1989. 167 с.
  19. Тиссо Б., Вельте Д. Образование и распространение нефти. М.: Мир, 1981. 501 с.
  20. Maffett J.R. – SIPES // Presentations Feb.18, 2010. URL:http://www.Sipeshouston.org/presentations/Moffett/20Davy/20janes18.2010
  21. Magoon L.B., Dow W.G. The petroleum system – from source to trap //AAPG Spec. Publ. 1994. Р. 3–24.
  22. TEMISPAK (Beicip-Franlab Headquarters, Paris, France) Accessed November 13, 2018. URL: http://www.beicip.com/
  23. “Petrel” (Schlumberger, Ltd). Accessed November 13, 2018. URL: http://sis.slb.ru/_v/_i/logo_sis.png

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Tectonic scheme of the southwestern part of the Caspian oil and gas province and the northwestern part of the Predkavkazsko-Mangyshlak oil and gas province (according to [1] with changes and additions). Indicated (numbers in circles): I - Guryev-October vault; II - Justinian-Astrakhan salient; III - Karakul-Smushkovskaya zone. 1–6 — the consolidated crust of the Eurasian Plate: 1 — blocks of pre-Riphean consolidation; 2–6 - blocks of the Pre-Paleozoic (Cadom) consolidation: 2 - not processed, 3 - processed in the Early Paleozoic (Cambrian-Silurian) (basement of the western part of the Turan plate), 4 - processed in the Late Paleozoic (late Devonian-Early Carboniferous) (foundation Scythian plate); 5 - with reduced crust as a result of Early Paleozoic rift (Tugarakchansky rift); 6 - with reduced crust as a result of Late Devonian rift (Donbass-Tuarkyr rift), 7–8 transitional crust of destructive type: 7 - Pre-Riphean age of the Central Caspian depression, 8 - Pre-Paleozoic of the Tuarkyr trough; 9 - contours of intrabasin carbonate platforms of Upper Devonian-Bashkir age; 10 - baseline contour lines, km; 11 - border of the Caspian oil and gas province; 12 - the border of the rear crustal deformations of the collisional fold belt cadomides; 13 - transcontinental post-collisional shifts, 14 - transform fault; 15 - other faults; 16 - administrative boundaries

Download (946KB)
3. Fig. 2. Structural map of the roof of subsalt deposits (seismic horizon P1). 1 - seismic horizon P1 isohypses, km: a - basic after 0.2 km; b - intermediate; 2 - the southern border of the Caspian oil and gas province; 3 - the border of the Justinian-Astrakhan ledge on the roof of the subsalt complex (horizon P1); 4 - the border of the Astrakhan arch over the horizon P1; 5 - borders of regions with different stratigraphic confinement at the level of horizon P1; 6 - Paleozoic folded complex of the Karpinsky ridge; 7 - faults; 8 - administrative boundaries; 9 - local structures numbered: 2 - Kharabalinskaya, 3 - Nezhdannaya, 4 - Long-awaited, 5 - April, 6 - Vladimir, 15 - Camel, 20 - Enotaevskaya, 22 - Polynna, 34 - Split, 36 - Karakul

Download (1MB)
4. Fig. 3. Seismogeological model of subsalt section of the Astrakhan arch. (a), (b) - fragments of seismic profiles. 1 - cover D3fm; 2,3 - cover D3f3; 4 - carbonate facies D1 – D2; 5 - pre-Devonian stratum; 6 - terrigenous stratum D1

Download (794KB)
5. Fig. 4. Model of the reservoir of the Astrakhan arch (according to [1] with changes and additions). 1–4 - seismic facies of the carbonate platform: 1 - undertom, shallow carbonate-terrigenous sediments with bioherm structures; 2 - upper fonds, shallow carbonate-terrigenous sediments with elements of the clinoform structure (submerged shelf); 3 - Klinotem, mostly terrigenous, carbonate-detrital sediments of the slope and foot of the carbonate platform, 4 - lower fonds, mainly clay, carbonate-clay depressive sediments; 5 - topo-depressive filling complexes; 6 - carbonate structures; 7 - shallow volcanic shelf complexes; 8 —fill-in infill complexes (deposition of a fan); 9 - volcanogenic-sedimentary complexes of the Lower Paleozoic; 10 - the surface of the foundation; 11–13 - tires: 11 - regional, 12 - zonal, 13 - local; 14 - area disintegrated surface of the carbonate platform; 15 - surfaces of regional disagreements; 16 - faults; 17 - seismic horizons; 18 - age indices of seismic complexes; 19 - well location

Download (582KB)
6. Fig. 5. Structural map of the Devonian base of the Astrakhan oil and gas accumulation zone and the location of structural type objects (according to [1] with changes and additions). 1 - lines of seismic profiles; 2 - isolines of the depth of the roof of the Dodewon complex, m; 3 - faults; 4 - contour of the Astrakhan carbonate massif

Download (742KB)
7. Fig. 6. Deep dynamic section along the seismic profile through the Elenovsky-Shortambaysky shaft (according to [1] with changes and additions).

Download (726KB)
8. Fig. 7. Deep dynamic section along the seismic profile through the Devonian carbonate massifs (according to [1], with changes and additions).

Download (1MB)
9. Fig. 8. Scheme of the isopachite of the Famensko-Lower Turtney carbonate complex. 1 - a possible local tire, 2 - predicted search objects, isolated carbonate massifs, covered with a tourney clay layer, 3 - no terrigenous tire

Download (302KB)
10. Fig. 9. Scheme of the structure of the proximal part of the Zavolzhsky subsea extrusion cone, composed of terrigenous Early-Martinsko-Nizhnekungurskiy deposits. 1 - ledge of the Astrakhan carbonate massif; 2 - lower and upper (conditionally) boundaries of the slope of the deep-sea basin; 3 - boundary of the erosional incision; 4 - values ​​of the power of underwater cone deposits, m; 5 - isopachites of underwater cone deposits, km; 6 - isolines of the exhaust gas surface P1, km; 7 - submarine canyons; 8 - lines of seismic profiles; 9 - possible hydrocarbon trap and identified promising structures

Download (644KB)
11. Fig. 10. Sections characterizing the structure of the proximal part of the Zavolzhsky fan.

Download (841KB)
12. Fig. 11. Model of the structure of the Bashkir complex (according to [12]).

Download (356KB)
13. Fig. 12. Scheme of distribution of promising objects in the Visean-Bashkir complex. 1 - contour of the Astrakhan arch; 2 - faults; 3 - isohypsum in the reflecting horizon I P (C2b), km; 4 - contour of the Astrakhan gas condensate field; 5 - a promising area for identifying hydrocarbon deposits in Bashkir hypergenically altered limestones: a - under the Assel tire, b - under the Moscow tire

Download (581KB)
14. Fig. 13. Comparison of filming 2D and 3D, made by one line. Spatial summation in 3D significantly improved the mapping of the subsalt salt mass.

Download (766KB)
15. Fig. 14. The ratio of the areas of the licensed blocks and the lower middle-Devonian perspective objects of the Astrakhan-Zhambay oil and gas region. 1 - border of the Astrakhan arch; Contours of promising Lower-Middle-Devonian objects: 2 - Tambov carbonate massif; 3 - Volodarsky carbonate massif; 4 - Elenovsky-Shortambay shaft; 5–7 - license areas: 5 - prospecting, 6 - exploration, 7 - operational

Download (1MB)
16. Fig. 15. The ratio of the areas of the licensed blocks and the Visean-Bashkir perspective objects of the Astrakhan-Zhambay oil and gas region. 1 - border of the Astrakhan carbonate massif; 2 - border of the Astrakhan gas condensate field; promising areas for identifying gas deposits in Bashkir limestone: 3 - under the Asselsky tire, 4 - under the Moscow tire; 5 - in the Upper Carboniferous-Lower Permian terrigenous sediments (underwater cone); 6–8 - license areas: 6 - search; 7 - exploration; 8 - operational

Download (1MB)
17. Fig. 16. Scheme of profiles of past years, proposed for reprocessing and testing of new profiles on the technology of wide azimuth 3D CDP. 1-2 - lines of regional profiles recommended for: 1 - processing; 2 - working off; 3 - areas of 3D shooting; 4 - contour of the Astrakhan gas condensate field; 5 - deep wells; 6 - border of the Astrakhan arch on the carbonate scarp; 7 - faults and boundaries; 8 - administrative boundaries

Download (399KB)

Copyright (c) 2019 Russian academy of sciences