Numerical modelling of the co-gasification process with staged feeding of coal and biomass
- Authors: Donskoy I.G.1
-
Affiliations:
- Melentiev Energy Systems Institute SB RAS
- Issue: No 2 (2025)
- Pages: 42-50
- Section: Articles
- URL: https://journals.eco-vector.com/0023-1177/article/view/687477
- DOI: https://doi.org/10.31857/S0023117725020049
- EDN: https://elibrary.ru/KPEMVN
- ID: 687477
Cite item
Abstract
A two-stage scheme of a coal and biomass co-gasification process is proposed, in which partial combustion of coal produces a high-temperature gasifying agent, which is used for biomass gasification. At the same time, it is possible to reduce thermodynamic losses in the gasification process by reducing the temperature of the gasifier reaction zone due to the high reactivity of biofuels compared to coal. Using a stationary one-dimensional kinetic-thermodynamic model of a two-stage reactor, numerical calculations are carried out with varying the coal-biofuel ratio and specific oxidizer consumption. A special feature of the model is taking into account the recirculation of residual char. The calculation results allow determining the optimal degree of coal replacement with plant biomass according to technological criteria (cold gas efficiency, specific yield of combustible components).
Keywords
Full Text

About the authors
I. G. Donskoy
Melentiev Energy Systems Institute SB RAS
Author for correspondence.
Email: donskoy.chem@mail.ru
Russian Federation, Irkutsk
References
- Bhuiyan A.A., Blicblau A.S., Sadrul Islam A.K.M., Naser J. // Journal of the Energy Institute. 2018. V. 91. No. 1. P. 1. https://doi.org/10.1016/j.joei.2016.10.006
- Vershinina K., Dorokhov V., Romanov D., Strizhak P. // Waste and Biomass Valorization. 2023. V. 14. P. 431. https://doi.org/10.1007/s12649-022-01883-x
- Guo J.-X. // Clean Technologies and Environmental Policy. 2022. V. 24. P. 2531. https://doi.org/10.1007/s10098-022-02332-y
- Кейко А.В., Ширкалин И.А., Свищев Д.А. // Изв. РАН. Энерг. 2006. № 3. С. 55.
- Kirubakaran V., Sivaramakrishnan V., Nalini R. et al. // Energy Sources A. 2009. V. 31. No. 11. P. 967. http://dx.doi.org/10.1080/15567030801904541
- Svishchev D. // Energy Systems Research. 2021. V. 4. No. 3. P. 38. http://dx.doi.org/10.38028/esr.2021.03.0004
- van der Drift A., Boerrigter H., Coda B., Cieplik M.K., Hemmes K. Entrained flow gasification of biomass. Ash behaviour, feeding issues, and system analyses. Report ECN-C-04-039. 2004.
- Tolvanen H., Keipi T., Raiko R. // Fuel. 2016. V. 176. P. 153.
- Wang T., Stiegel G. (eds.) Integrated gasification combined cycle (IGCC) technologies Woodhead Publ., 2017.
- Obernberger I., Brunner T., Mandl C., Kerschbaum M., Svetik T. // Energy Procedia. 2017. V. 120. P. 681. https://doi.org/10.1016/j.egypro.2017.07.184
- Шумовский А.В., Горлов Е.Г. // ХТТ. 2022. № 3. С. 13. https://doi.org/10.31857/S0023117722030094 [Solid Fuel Chem. 2022. V. 56. P. 166. https://doi.org/10.3103/S0361521922030090]
- He Z.-M., Deng Y.-J., Cao J.-P., Zhao X.-Y. // Fuel. 2024. V. 357A. P. 129728. https://doi.org/10.1016/j.fuel.2023.129728
- Thattai A.T., Oldenboek V., Schoenmakers L., Woudstra T., Aravind P.V. // Applied Energy. 2016. V. 168. P. 381. http://dx.doi.org/10.1016/j.apenergy.2016.01.131
- Sofia D., Llano P.C., Giuliano A. et al. // Chem. Eng. Res. Des. 2014. V. 92. P. 1428. https://doi.org/10.1016/j.cherd.2013.11.019
- Huang J., Liao Y., Lin J. et al. // Energy. 2024. V. 298. P. 131306. https://doi.org/10.1016/j.energy.2024.131306
- Kleinhans U., Wieland C., Frandsen F.J., Spliethoff H. // Progress in Energy and Combustion Science. 2018. V. 68. P. 65. https://doi.org/10.1016/j.pecs.2018.02.001
- Лапидус А.Л., Шумовский А.В., Горлов Е.Г. // ХТТ. 2023. № 6. С. 11. https://doi.org/10.31857/S0023117723060051 [Solid Fuel Chem. 2023. V. 57. P. 373. https://doi.org/10.3103/S0361521923060046]
- Jeong H.J., Hwang I.S., Park S.S., Hwang J. // Fuel. 2017. V. 196. P. 371. http://dx.doi.org/10.1016/j.fuel.2017.01.103
- Донской И.Г. // ХТТ. 2019. № 2. С. 55. https://doi.org/10.1134/S002311771902004X [Solid Fuel Chemistry. 2019. V. 53. No. 2. P. 113. https://doi.org/10.3103/S0361521919020046]
- Kuznetsov G.V., Romanov D.S., Vershinina K.Yu., Strizhak P.A. // Fuel. 2021. V. 302. P. 121203. https://doi.org/10.1016/j.fuel.2021.121203
- Малышев Д.Ю., Сыродой С.В. // Изв. Томск. политехн. ун-та. Инж. георес. 2020. Т. 331. № 6. С. 77. https://doi.org/10.18799/24131830/2020/6/2677
- Ambatipudi M.K., Varunkumar S. // Proc. Combust. Inst. 2023. V. 39. P. 3479. https://doi.org/10.1016/j.proci.2022.08.031
- Lapuerta M., Hernandez J.J., Pazo A., Lopez J. // Fuel Proc. Technol. 2008. V. 89. No. 9. P. 828. https://doi.org/10.1016/j.fuproc.2008.02.001
- Kobayashi N., Suami A., Itaya Y. // J. Chem. Eng. Jpn. 2017. V. 50. No. 11. P. 862. https://doi.org/10.1252/jcej.16we266
- Itaya Y., Suami A., Kobayashi N. // AIP Conf. Proc. 2018. V. 1931. P. 020003. https://doi.org/10.1063/1.5024057
- Long H.A., Wang T. // Int. J. Energy Res. 2016. V. 40. No. 4. P. 473. https://doi.org/10.1002/er.3452
- Deraman M.R., Rasid E.A., Othman M.R., Suli L.N.M. // IOP Conf. Ser. Mat. Sci. Eng. 2019. V. 702. P. 012005. https://doi.org/10.1088/1757-899X/702/1/012005
- Uson S., Valero A., Correas L., Martinez A. // Int. J. Thermodynamics. 2004. V. 7. No. 4. P. 165.
- Perez-Jeldres R., Cornejo P., Flores M., Gordon A., Garcia X. // Energy. 2017. V. 120. P. 663. https://doi.org/10.1016/j.energy.2016.11.116
- Донской И.Г., Свищев Д.А., Шаманский В.А., Козлов А.Н. // Научн. вест. НГТУ. 2015. № 1 (58). С. 231. https://doi.org/10.17212/1814-1196-2015-1-231-245
- Donskoy I. // Energy Systems Research. 2021. V. 4. No. 2. P. 27. http://dx.doi.org/10.38028/esr.2021.02.0003
- Jahromi M.-A.Y., Atashkari K., Kalteh M. // Int. J. Energy Res. 2019. V. 43. No. 11. P. 5864. https://doi.org/10.1002/er.4692
- Hashimoto T., Sakamoto K., Ota K. et al. // Mitsubishi Heavy Industries Technical Review. 2010. V. 47. No. 4. P. 27.
- Watanabe H., Kurose R. // Advanced Powder Technology. 2020. V. 31. P. 2733. https://doi.org/10.1016/j.apt.2020.05.002
- HadiJafari P., Risberg M., Hesstrom J.G.I., Gebart B.R. // Energy Fuels. 2020. V. 34. P. 1870. https://doi.org/10.1021/acs.energyfuels.9b03942
- Chishty M.A., Umeki K., Risberg M., Wingren A., Gebart R. // Fuel Proc. Technol. 2021. V. 218. P. 106861. https://doi.org/10.1016/j.fuproc.2021.106861
- Козлов А.Н., Свищев Д.А., Худякова Г.И., Рыжков А.Ф. // ХТТ. 2017. № 4. С. 12. https://doi.org/10.7868/S0023117717040028 [Solid Fuel Chem. 2017. V. 51 P. 205. https://doi.org/10.3103/S0361521917040061]
- Han C., Situ Y., Zhu H. et al. // Chinese J. Chem. Eng. 2024. V. 68. P. 203. https://doi.org/10.1016/j.cjche.2023.12.010
Supplementary files
