Adsorption properties of single gold, nickel and platinum nanoparticles deposited on the silicon surface

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Gold, nickel and platinum nanoparticles were synthesized by impregnating the monocrystalline silicon surface with precursors (an aqueous solution of the corresponding salt). The morphology of formed nanostructured coatings has been studied, the electronic structure and adsorption properties of synthesized nanoparticles with respect to H2, O2, and H2O have been determined. It was found that oxidized nickel nanoparticles are reduced by molecular hydrogen, and unalloyed platinum nanoparticles are oxidized by molecular oxygen already at room temperature, which is not observed for particles deposited in a similar way on highly oriented pyrolytic graphite. We also found that the formation of water molecules on gold nanoparticles in interaction with H2 and O2 proceeds in two stages, unlike the three-stage process (sequential exposure in H2, O2, H2) which is characteristic of nanoparticles deposited on graphite. Differences in the adsorption properties of nanoparticles of the same type deposited on graphite and silicon are associated with the adsorption of a significant amount of test gases on the latter.

全文:

受限制的访问

作者简介

A. Gatin

Федеральный исследовательский центр химической физики им. Н.Н. Семенова РАН

Email: mvgrishin68@yandex.ru
俄罗斯联邦, ул. Косыгина, 4, корп. 1, Москва, 119991

S. Ozerin

Федеральный исследовательский центр химической физики им. Н.Н. Семенова РАН

Email: mvgrishin68@yandex.ru
俄罗斯联邦, ул. Косыгина, 4, корп. 1, Москва, 119991

P. Ignateva

Федеральный исследовательский центр химической физики им. Н.Н. Семенова РАН; Федеральное государственное автономное образовательное учреждение высшего образования “Московский физико-технический институт (национальный исследовательский университет)”

Email: mvgrishin68@yandex.ru
俄罗斯联邦, ул. Косыгина, 4, корп. 1, Москва, 119991; пер. Институтский, 9, Долгопрудный, Московская обл., 141701

V. Kharitonov

Федеральный исследовательский центр химической физики им. Н.Н. Семенова РАН

Email: mvgrishin68@yandex.ru
俄罗斯联邦, ул. Косыгина, 4, корп. 1, Москва, 119991

S. Sarvadii

Федеральный исследовательский центр химической физики им. Н.Н. Семенова РАН

Email: mvgrishin68@yandex.ru
俄罗斯联邦, ул. Косыгина, 4, корп. 1, Москва, 119991

M. Grishin

Федеральный исследовательский центр химической физики им. Н.Н. Семенова РАН

编辑信件的主要联系方式.
Email: mvgrishin68@yandex.ru
俄罗斯联邦, ул. Косыгина, 4, корп. 1, Москва, 119991

参考

  1. Roldan Cuenya B. Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects // Thin Solid Films. 2010. V. 518. № 12. P. 3127–3150. https://doi.org/10.1016/j.tsf.2010.01.018
  2. Joudeh N., Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists // Journal of Nanobiotechnology. 2022. V. 20. № 1. P. 262. https://doi.org/10.1186/s12951-022-01477-8
  3. Hakkinen H., Abbet W., Sanchez A., Heiz U., Landman U. Structural, electronic, and impurity-doping effects in nanoscale chemistry: Supported gold nanoclusters // Angewandte Chemie International Edition. 2003. V. 42. № 11. P. 1297–1300. https://doi.org/10.1002/anie.200390334
  4. Pillay D., Hwang G.S. Growth and structure of small gold particles on rutile TiO2 (110) // Phys. Rev. B. 2005. V. 72. № 20. P. 205422. https://doi.org/10.1103/PhysRevB.72.205422
  5. Sanchez A., Abbet S., Heiz U., Schneider W.D., Hakkinen H., Barnett R.N., Landman U. When gold is not noble: nanoscale gold catalysts // The Journal of Physical Chemistry A. 1999. V. 103. № 48. P. 9573–9578. https://doi.org/10.1021/jp9935992
  6. Rodriguez J.A., Liu G., Jirsak T., Hrbek J., Chang Z.P., Dvorak J., Maiti A. Activation of gold on titania: Adsorption and reaction of SO2 on Au/TiO2 (110) // Journal of the American Chemical Society. 2002. V. 124. № 18. P. 5242–5250. https://doi.org/10.1021/ja020115y
  7. Liu P., Nørskov J.K. Ligand and ensemble effects in adsorption on alloy surfaces // Physical Chemistry Chemical Physics. 2001. V. 3. № 17. P. 3814–3818. https://doi.org/10.1039/B103525H
  8. Carlsson A.F., Naschitzki M., Bäumer M., Freund H.-J. The structure and reactivity of Al2O3-supported cobalt–palladium particles: A CO-TPD, STM, and XPS study // The Journal of Physical Chemistry B. 2003. V. 107. № 3. P. 778–785. https://doi.org/10.1021/jp021966v
  9. Besenbacher F., Chorkendorff I., Clausen B.S., Hammer B., Molenbroek A.M., Nørskov J.K., Stensgaard I. Design of a surface alloy catalyst for steam reforming // Science. 1998. V. 279. № 5358. P. 1913–1915. https://doi.org/10.1126/science.279.5358.1913
  10. Rodriguez J.A., Liu P., Hrbek J., Evans J., Perez M. Water gas shift reaction on Cu and Au nanoparticles supported on CeO2 (111) and ZnO (000): Intrinsic activity and importance of support interactions // Angewandte Chemie International Edition. 2007. V. 46. № 8. P. 1329–1332. https://doi.org/10.1002/anie.200603931
  11. Yoon B., Hakkinen H., Landman U., Worz A.S., Antonietti J.M., Abbet S., Judai K., Heiz U. Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO // Science. 2005. V. 307. № 5708. P. 403–407. https://doi.org/10.1126/science.1104168
  12. Yan Z., Chinta S., Mohamed A.A., Fackler J.P., Goodman D.W. The role of F-centers in catalysis by Au supported on MgO // Journal of the American Chemical Society. 2005. V. 127. № 6. P. 1604–1605. https://doi.org/10.1021/ja043652m
  13. Esch F., Fabris S., Zhou L., Montini T., Africh C., Fornasiero P., Comelli G., Rosei R. Electron localization determines defect formation on ceria substrates // Science. 2005. V. 309. № 5735. P. 752–755. https://doi.org/10.1126/science.1111568
  14. Farfan-Arribas E., Madix R.J. Different binding sites for methanol dehydrogenation and deoxygenation on stoichiometric and defective TiO2 (110) surfaces // Surface Science. 2003. V. 544. № 2–3. P. 241–260. https://doi.org/10.1016/j.susc.2003.08.025
  15. Rodriguez J.A., Wang X., Liu P., Wen W., Hanson J.C., Hrbek J., Perez M., Evans J. Gold nanoparticles on ceria: Importance of O vacancies in the activation of gold // Topics in Catalysis. 2007. V. 44. № 1–2. P. 73–81. https://doi.org/10.1007/s11244-007-0280-1
  16. Ono L.K., Sudfeld D., Cuenya B.R. In situ gas-phase catalytic properties of TiC-supported size-selected gold nanoparticles synthesized by diblock copolymer encapsulation // Surface Science. 2006. V. 600. № 23. P. 5041–5050. https://doi.org/10.1016/j.susc.2006.08.025
  17. Yan W., Chen B., Mahurin S.M., Dai S., Overbury S.H. Brookite-supported highly stable gold catalytic system for CO oxidation // Chemical Communications. 2004. V. 17. P. 1918–1919. https://doi.org/10.1039/B405434B
  18. Rodriguez J.A., Liu P., Viñes F., Illas F., Takahashi Y., Nakamura K. Dissociation of SO2 on Au/TiC (001): Effects of Au–C interactions and charge polarization // Angewandte Chemie. 2008. V. 120. № 35. P. 6787–6791. https://doi.org/10.1002/ange.200801027
  19. Ono L.K., Roldan Cuenya B. Effect of interparticle interaction on the low temperature oxidation of CO over size-selected Au nanocatalysts supported on ultrathin TiC films // Catalysis Letters. 2007. V. 113. № 3–4. P. 86–94. https://doi.org/10.1007/s10562-007-9027-7
  20. Sanchez S.I., Menard L.D., Bram A., Kang J.H., Small M.W., Nuzzo R.G., Frenkel A.I. The emergence of nonbulk properties in supported metal clusters: Negative thermal expansion and atomic disorder in Pt nanoclusters supported on γ-Al2O3 // Journal of the American Chemical Society. 2009. V. 131. № 20. P. 7040–7054. https://doi.org/10.1021/ja809182v
  21. Croy J.R., Mostafa S., Liu J., Sohn Y., Roldan Cuenya B. Size dependent study of MeOH decomposition over size-selected Pt nanoparticles synthesized via micelle encapsulation // Catalysis Letters. 2007. V. 118. № 1–2. P. 1–7. https://doi.org/10.1007/s10562-007-9162-1
  22. Shaikhutdinov S.K., Meyer R., Naschitzki M., Baumer M., Freund H.J. Size and support effects for CO adsorption on gold model catalysts // Catalysis Letters. 2003. V. 86. № 4. P. 211–219. https://doi.org/10.1023/A:1022616102162
  23. Ferreira P.J., Ia O’ G.J., Shao-Horn Y., Morgan D., Makharia R., Kocha S., Gasteiger H.A. Instability of Pt ∕ C electrocatalysts in proton exchange membrane fuel cells: A mechanistic investigation // Journal of The Electrochemical Society. 2005. V. 152. № 11. P. A2256. https://doi.org/10.1149/1.2050347
  24. Mostafa S., Croy J.R., Heinrich H., Roldan Cuenya B. Catalytic decomposition of alcohols over size-selected Pt nanoparticles supported on ZrO2: A study of activity, selectivity, and stability // Applied Catalysis A: General. 2009. V. 366. № 2. P. 353–362. https://doi.org/10.1016/j.apcata.2009.07.028
  25. Gatin A.K., Sarvadii S.Y., Dokhlikova N.V., Ozerin S.A., Kharitonov V.A., Baimukhambetova D., Grishin M.V. Less and less noble: Local adsorption properties of supported Au, Ni, and Pt nanoparticles // Nanomaterials. 2023. V. 13. № 8. P. 1365. https://doi.org/10.3390/nano13081365
  26. Гатин А.К., Гришин М.В., Гуревич С.А., Дохликова Н.В., Кирсанкин А.А., Кожевин В.М., Колченко Н.Н., Ростовщикова Т.Н., Харитонов В.А., Шуб Б.Р., Явсин Д.А. Взаимодействие водорода и кислорода на поверхности единичных наночастиц золота // Известия Академии наук. Серия химическая. 2014. № 8. С. 1696−1702.
  27. Баймухамбетова Д., Гатин А.К., Озерин С.А., Гришин М.В. Взаимодействие синтезированных на графите наночастиц платины с закисью азота // Коллоидный журнал. 2023. Т. 85. № 4. С. 403–409. https://doi.org/10.31857/S0023291223600219
  28. Гатин А.К., Дохликова Н.В., Мухутдинова Р.Г., Озерин С.А., Гришин М.В. Особенности взаимодействия окисленных наночастиц платины с молекулярным водородом и монооксидом углерода // Коллоидный журнал. 2022. Т. 84. № 6. С. 705–714. https://doi.org/ 10.31857/S0023291222600110
  29. Гришин М.В., Гатин А.К., Голубев Е.К., Дохликова Н.В., Озерин С.А., Сарвадий С.Ю., Степанов И.Г., Слуцкий В.Г., Харитонов В.А., Шуб Б.Р. Взаимодействие наночастиц золота и никеля с молекулярным водородом и монооксидом углерода в присутствии электрического поля // Коллоидный журнал. 2023. Т. 85. № 1. С. 19–27. https://doi.org/ 10.31857/S0023291222600407
  30. Смирнов В.И. Физика полупроводниковых приборов: учебное пособие. Ульяновск: УлГТУ, 2022.
  31. Бабичев А.П., Бабушкина Н.А., Братковский А.М. и др.; под ред. Григорьева И.С. и Мейлихова Е.З. Физические величины: Справочник. Москва: Энергоатомиздат, 1991.
  32. Гришин М.В., Гатин А.К., Дохликова Н.В., Кирсанкин А.А., Харитонов В.А., Шуб Б.Р. Адсорбционные свойства наночастиц // Известия Академии наук. Серия химическая. 2013. № 7. С. 1525−1532.
  33. Hilf M., Brenig W. Hydrogen adsorption and desorption on silicon revisited // The Journal of Chemical Physics. 2000. V. 112. № 7. P. 3113–3116. https://doi.org/10.1063/1.480895.
  34. Давыдов C.Ю. Адсорбция атомов водорода на кремнии // Журнал технической физики. 2005. Т. 75. № 1. С. 141–142.
  35. Tsuda Ya., Yoshigoe A., Ogawa Sh., Sakamoto T., Takakuwa Yu. Observation of chemisorbed O2 molecule at SiO2/Si(001) interface during Si dry oxidation // e-Journal of Surface Science and Nanotechnology. 2023. V. 21. № 1. P. 30−39. https://doi.org/10.1380/ejssnt.2023-005
  36. Davar F., Fereshteh Z., Salavati-Niasari M. Nanoparticles Ni and NiO: Synthesis, characterization and magnetic properties // Journal of Alloys and Compounds. 2009. V. 476. № 1–2. P. 797–801. https://doi.org/10.1016/j.jallcom.2008.09.121
  37. Зи С.М. Физика полупроводниковых приборов: В 2 книгах. Кн. 1. Пер. с англ. Москва: Мир, 1984.
  38. Слинкин А.А., Кучеров А.В., Рубинштейн А.М. О кинетике адсорбции и природе необратимой хемосорбции водорода на нанесенных микрокристаллах никеля // Кинетика и катализ. 1978. Т. 19. № 2. С. 520–523.
  39. Li J.; Li P.; Li J.; Tian Z.; Yu F. Highly-dispersed Ni-NiO nanoparticles anchored on an SiO2 support for an enhanced CO methanation performance // Catalysts. 2019. V. 9. № 6. P. 506. https://doi.org/10.3390/catal9060506
  40. Гатин А.К., Гришин М.В., Гуревич С.А., Дохликова Н.В., Кирсанкин А.А., Кожевин В.М., Локтева Е.С., Ростовщикова Т.Н., Сарвадий С.Ю., Шуб Б.Р., Явсин Д.А. Адсорбция водорода на наночастицах никеля с различной кристалличностью // Российские нанотехнологии. 2015. Т. 10. № 11–12. С. 45–49.
  41. Renouprez A.J., Fouilloux P., Candy J.P., Tomkinson J. Chemisorption of water on nickel surfaces // Surface Science. 1979. V. 83. № 1. P. 285–295. https://doi.org/10.1016/0039-6028(79)90493-x
  42. Zhensheng J., Chanjuan X., Qingmei Z., Feng Y., Jiazheng Zh., Jinzhen X. Catalytic behavior of nanoparticle α-PtO2 for ethanol oxidation // Journal of Molecular Catalysis A: Chemical. 2003. V. 191. № 1. P. 61–66. https://doi.org/10.1016/S1381-1169(02)00029-8
  43. Pant A.K., Muraka S.P., Shepard C., Lanford W. Kinetics of platinum silicide formation during rapid thermal processing // Journal of Applied Physics. 1992. V. 72. № 5. P. 1833–1836. https://doi.org/10.1063/1.351654
  44. Zhu J., Somorjai G.A. Formation of platinum silicide on a platinum nanoparticle array model catalyst deposited on silica during chemical reaction // Nano Letters. 2001. V. 1. № 1. P. 8–13. https://doi.org/10.1021/nl005512q

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Gold nanoparticles applied by impregnation onto the surface of oxidized silicon: a – topographic image of a surface area, b – profile along the line indicated on the topographic image, c – averaged I–V characteristics of silicon (curve 1) and gold (curve 2).

下载 (29KB)
3. Fig. 2. I–V characteristics of gold nanoparticles measured after exposure to H2 (a), O2 (b) and H2O (c).

下载 (27KB)
4. Fig. 3. Oxidized silicon single crystal with deposited nickel nanoparticles: a – topographic image of a surface area, b – profile along the line indicated on the topographic image, c – current-voltage characteristics of the substrate (curve 1) and nanoparticles (curve 2).

下载 (27KB)
5. Fig. 4. I–V characteristics of nickel deposited on the surface of oxidized silicon (a) after exposure to H2 and (b) after exposure to H2O.

下载 (16KB)
6. Fig. 5. Oxidized silicon single crystal with deposited platinum nanoparticles: a – topographic image of a surface area, b – profile along the line indicated on the topographic image, c – current-voltage characteristics of the substrate (curve 1) and nanoparticles (curve 2).

下载 (26KB)
7. Fig. 6. I–V characteristics of platinum nanoparticles deposited on the surface of oxidized silicon (a) after exposure to H2, (b) after exposure to O2.

下载 (18KB)

版权所有 © Russian Academy of Sciences, 2024