Lipid Nanoparticles for Lutein Encapsulation and Delivery
- Authors: Shirokikh A.D.1, Guruleva Y.A.1, Marinets E.A.1, Koroleva M.Y.1
-
Affiliations:
- Mendeleev University of Chemical Technology of Russia, 125047, Moscow, Russia
- Issue: Vol 85, No 5 (2023)
- Pages: 705-714
- Section: Articles
- Submitted: 27.02.2025
- Published: 01.09.2023
- URL: https://journals.eco-vector.com/0023-2912/article/view/671297
- DOI: https://doi.org/10.31857/S0023291223600530
- EDN: https://elibrary.ru/DIKBRW
- ID: 671297
Cite item
Abstract
Recently, lipid nanoparticles have been intensively studied as carriers of lipophilic drugs. In this work, we have studied the stability of nanoemulsions with paraffin oil, solid lipid nanoparticles with stearic acid, and nanostructured lipid particles with paraffin oil and stearic acid in a mass ratio of 1 : 1. The obtained results have shown that all studied lipid systems stabilized with nonionic surfactants Tween 60 and Span 60 were stable to aggregation and subsequent sedimentation for more than 30 days. The incorporation of lutein into the lipid particles has almost no effect on their stability, while the size of solid lipid nanoparticles and nanostructured lipid nanoparticles decreases from 28–30 to 15–17 nm. The bioavailability of lutein loaded in lipid nanoparticles is evaluated from their effect on the restoration of blood flow velocity by simulating hemic hypoxia. Almost immediately after the application of lipid nanoparticles, the blood flow velocity ceases to decrease, and a tendency to its restoration is observed in 5–10 min. This shows that lipid nanoparticles with paraffin oil and stearic acid are promising candidates for the delivery of lipophilic drugs.
About the authors
A. D. Shirokikh
Mendeleev University of Chemical Technology of Russia, 125047, Moscow, Russia
Email: adshirokikh@gmail.com
Россия, 125047, Москва,
Миусская площадь, д. 9
Yu. A. Guruleva
Mendeleev University of Chemical Technology of Russia, 125047, Moscow, Russia
Email: m.yu.kor@gmail.com
Россия, 125047, Москва,
Миусская площадь, д. 9
E. A. Marinets
Mendeleev University of Chemical Technology of Russia, 125047, Moscow, Russia
Email: m.yu.kor@gmail.com
Россия, 125047, Москва,
Миусская площадь, д. 9
M. Yu. Koroleva
Mendeleev University of Chemical Technology of Russia, 125047, Moscow, Russia
Author for correspondence.
Email: m.yu.kor@gmail.com
Россия, 125047, Москва,
Миусская пл., д. 9
References
- Tadros T., Izquierdo P., Esquena J. Solans C. Formation and stability of nano-emulsions // Adv. Colloid Interface Sci. 2004. V. 108. P. 303–318. https://doi.org/10.1016/j.cis.2003.10.023
- McClements D.J., Decker E.A., Weiss J. Emulsion-based delivery systems for lipophilic bioactive components // J. Food Sci. 2007. V. 72. № 8. P. 109–124. https://doi.org/10.1111/j.1750-3841.2007.00507.x
- Khosa A., Reddi S., Saha R.N. Nanostructured lipid carriers for site-specific drug delivery // Biomed. & Pharmacother. 2018. V. 103. P. 598–613. https://doi.org/10.1016/j.biopha.2018.04.055
- Tang C.H., Chen H.L., Dong J.R. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as food-grade nanovehicles for hydrophobic nutraceuticals or bioactives // Appl. Sci. 2023. V. 13. № 3. P. 1726. https://doi.org/10.3390/app13031726
- Zhong Q., Zhang L. Nanoparticles fabricated from bulk solid lipids: Preparation, properties, and potential food applications // Adv. Colloid Interface Sci. 2019. V. 273. 102033. https://doi.org/10.1016/j.cis.2019.102033
- Gordillo-Galeano A., Mora-Huertas C.E. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release // Eur. J. Pharm. Biopharm. 2018. V. 133. P. 285–308. https://doi.org/10.1016/j.ejpb.2018.10.017
- McClements D.J., Jafari S.M. General aspects of nanoemulsions and their formulation // Nanoemulsions: Academic press. 2018. P. 3–20. https://doi.org/10.1016/B978-0-12-811838-2.00001-1
- Koroleva M.Y., Yurtov E.V. Nanoemulsions: The properties, methods of preparation and promising applications // Russ. Chem. Rev. 2012. V. 81. № 1. P. 21–43. https://doi.org/10.1070/RC2012v081n01ABEH004219
- Koroleva M., Portnaya I., Mischenko E., Abutbul-Ionita I., Kolik-Shmuel L., Danino D. Solid lipid nanoparticles and nanoemulsions with solid shell: Physical and thermal stability // J. Colloid Interface Sci. 2022. V. 610. P. 61–69. https://doi.org/10.1016/j.jcis.2021.12.010
- Higuchi W.I., Misra J. Physical degradation of emulsions via the molecular diffusion route and the possible prevention thereof // J. Pharm. Sci. 1962. V. 51. № 5. P. 459–466. https://doi.org/10.1002/jps.2600510514
- Koroleva M.Y., Yurtov E.V. Ostwald ripening in macro-and nanoemulsions // Russ. Chem. Rev. 2021. V. 90. № 3. P. 293–323. https://doi.org/10.1070/RCR4962
- Ribeiro M.D.M.M., Arellano D.B., Grosso C.R.F. The effect of adding oleic acid in the production of stearic acid lipid microparticles with a hydrophilic core by a spray-cooling process // Food Res. Int. 2012. V. 47. № 1. P. 38–44. https://doi.org/10.1016/j.foodres.2012.01.007
- Jeitler R., Glader C., Tetyczka C., Zeiringer S., Absenger-Novak M., Selmani A., Fröhlich E., Roblegg E. Investigation of cellular interactions of lipid-structured nanoparticles with oral mucosal epithelial cells // Frontiers in Mol. Biosci. 2022. V. 9. P. 917921. https://doi.org/10.3389/fmolb.2022.917921
- Dantas I.L., Bastos K.T.S., Machado M., Galvao J.G., Lima A.D., Gonsalves J.K.M.C., Almeida E.D.P., Araújo A.A.S., de Meneses C.T., Sarmento V.H.V., Nunes R.S., Lira A.A.M. Influence of stearic acid and beeswax as solid lipid matrix of lipid nanoparticles containing tacrolimus // J. Therm. Anal. Calorim. 2018. V. 132. P. 1557–1566. https://doi.org/10.1007/s10973-018-7072-7
- Pinto F., de Barros D.P., Reis C., Fonseca L.P. Optimization of nanostructured lipid carriers loaded with retinoids by central composite design // J. Mol. Liq. 2019. V. 293. P. 111468. https://doi.org/10.1016/j.molliq.2019.111468
- de Souza I.D., Saez V., de Campos V.E., Mansur C.R. Size and vitamin E release of nanostructured lipid carriers with different liquid lipids, surfactants and preparation methods // Macromolecular Symposia. 2019. V. 383. № 1. P. 1800011. https://doi.org/10.1002/masy.201800011
- Almeida E.D.P., Silva L.A.S., de Araujo G.R.S., Montalvão M.M., Matos S.S., da Cunha Gonsalves J.K.M., de Souza Nunes R., de Meneses C.T., Araujo R.G.O., Sarmento V.H.V., de Lucca Junior W., Correa C.B., Rodrigues Júnior J.J., Lira A.A.M. Chitosan-functionalized nanostructured lipid carriers containing chloroaluminum phthalocyanine for photodynamic therapy of skin cancer // Eur. J. Pharm. Biopharm. 2022. V. 179. P. 221–231. https://doi.org/10.1016/j.ejpb.2022.09.009
- Sánchez-López E., Espina M., Doktorovova S., Souto E.B., García M.L. Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye–Part II-Ocular drug-loaded lipid nanoparticles // Eur. J. Pharm. Biopharm. 2017. V. 110. P. 58–69. https://doi.org/10.1016/j.ejpb.2016.10.013
- Matarazzo A.P., Elisei L.M.S., Carvalho F.C., Bonfílio R., Ruela A.L.M., Galdino G., Pereira G.R. Mucoadhesive nanostructured lipid carriers as a cannabidiol nasal delivery system for the treatment of neuropathic pain // Eur. J. Pharm. Sci. 2021. V. 159. P. 105698. https://doi.org/10.1016/j.ejps.2020.105698
- Lüdtke F.L., Stahl M.A., Grimaldi R., Forte M.B.S., Gigante M.L., Ribeiro A.P.B. Optimization of high pressure homogenization conditions to produce nanostructured lipid carriers using natural and synthetic emulsifiers // Food Res. Int. 2022. V. 160. P. 111746. https://doi.org/10.1016/j.foodres.2022.111746
- Kelidari H.R., Saeedi M., Akbari J., Morteza-Semnani K., Valizadeh H., Maniruzzaman M., Farmoudeh A., Nokhodchi A. Development and optimisation of spironolactone nanoparticles for enhanced dissolution rates and stability // AAPS Pharm. Sci. Tech. 2017. V. 18. P. 1469–1474. https://doi.org/10.1208/s12249-016-0621-0
- Shirokikh A.D., Anikina V.A., Zamyatina E.A., Mishchenko E.V., Koroleva M.Y., Ivanov V.K., Popova N.R. Bioavailability of nanoemulsions modified with curcumin and cerium dioxide nanoparticles // Nanosystems: Phys. Chem. Math. 2023. V. 14. № 1. P. 89–97. https://doi.org/10.17586/2220-8054-2023-14-1-89-97
- Gadad A.P., Tigadi S.G., Dandagi P.M., Mastiholimath V.S., Bolmal U.B. Rosuvastatin loaded nanostructured lipid carrier: For enhancement of oral bioavailability // Indian J. Pharm. Ed. Res. 2016. V. 50. № 4. P. 605–611. https://doi.org/10.5530/ijper.50.4.13
- Moghddam S.M.M., Ahad A., Aqil M., Imam S.S., Sultana Y. Optimization of nanostructured lipid carriers for topical delivery of nimesulide using Box–Behnken design approach // Artif. Cells, Nanomed., and Biotechnol. 2017. V. 45. № 3. P. 617–624. https://doi.org/10.3109/21691401.2016.1167699
- Becerra M.O., Contreras L.M., Lo M.H., Díaz J.M., Herrera G.C. Lutein as a functional food ingredient: Stability and bioavailability // J. Funct. Foods. 2020. V. 66. 103771. https://doi.org/10.1016/j.jff.2019.103771
- Ozawa Y., Sasaki M., Takahashi N., Kamoshita M., Miyake S., Tsubota K. Neuroprotective effects of lutein in the retina // Curr. Pharm. Des. 2012. V. 18. № 1. P. 51–56. https://doi.org/10.2174/138161212798919101
- Ahn Y.J., Kim H. Lutein as a modulator of oxidative stress-mediated inflammatory diseases // Antioxidants. 2021. V. 10(9). P. 1448. https://doi.org/10.3390/antiox10091448
- Wang Y., Geng M., Zhang X., Yan M., Sun L., Zhao Q. Preparation of lutein nanoemulsion by ultrasonic homogenization method: Stability and in vitro anti-inflammatory activity // Algal Res. 2023. V. 73. P. 103154. https://doi.org/10.1016/j.algal.2023.103154
- Lim C., Kim D.W., Sim T., Hoang N.H., Lee J.W., Lee E.S., Youn Y.S., Oh K.T. Preparation and characterization of a lutein loading nanoemulsion system for ophthalmic eye drops // J. Drug Delivery Sci. Technol. 2016. V. 36. P. 168–174. https://doi.org/10.1016/j.jddst.2016.10.009
- Doost A.S., Afghari N., Abbasi H., Nasrabadi M.N., Dewettinck K., Van der Meeren P. Nano-lipid carriers stabilized by hydrophobically modified starch or sucrose stearate for the delivery of lutein as a nutraceutical beverage model // Colloids Surf. A: Physicochem. Eng. Aspects. 2020. V. 605. P. 125349. https://doi.org/10.1016/j.colsurfa.2020.125349
- Weigel F., Weiss J., Decker E.A., McClements D.J. Lutein-enriched emulsion-based delivery systems: Influence of emulsifiers and antioxidants on physical and chemical stability // Food Chem. 2018. V. 242. P. 395–403. https://doi.org/10.1016/j.foodchem.2017.09.060
- Teo A., Lee S.J., Goh K.K., Wolber F.M. Kinetic stability and cellular uptake of lutein in WPI-stabilised nanoemulsions and emulsions prepared by emulsification and solvent evaporation method // Food Chem. 2017. V. 221. P. 1269–1276. https://doi.org/10.1016/j.foodchem.2016.11.030
- Toragall V., Srirangam P., Jayapala N., Baskaran V. Lutein encapsulated oleic-linoleic acid nanoemulsion boosts oral bioavailability of the eye protective carotenoid lutein in rat model // Mater. Today Commun. 2021. V. 28. P. 102522. https://doi.org/10.1016/j.mtcomm.2021.102522
- Lacatusu I., Mitrea E., Badea N., Stan R., Oprea O., Meghea A. Lipid nanoparticles based on omega-3 fatty acids as effective carriers for lutein delivery. Preparation and in vitro characterization studies // J. Funct. Foods. 2013. V. 5. № 3. P. 1260–1269. https://doi.org/10.1016/j.jff.2013.04.010
- Tan F., Cui H., Bai C., Qin C., Xu L., Han J. Preparation, optimization, and transcorneal permeability study of lutein-loaded solid lipid nanoparticles // J. Drug Delivery Sci. Technol. 2021. V. 62. P. 102362. https://doi.org/10.1016/j.jddst.2021.102362
- Liu M., Wang F., Pu C., Tang W., Sun Q. Nanoencapsulation of lutein within lipid-based delivery systems: Characterization and comparison of zein peptide stabilized nano-emulsion, solid lipid nanoparticle, and nano-structured lipid carrier // Food Chem. 2021. V. 358. P. 129840. https://doi.org/10.1016/j.foodchem.2021.129840
- Mitri K., Shegokar R., Gohla S., Anselmi C., Müller R.H. Lipid nanocarriers for dermal delivery of lutein: Preparation, characterization, stability and performance // Int. J. Pharm. 2011. V. 414. № 1–2. P. 267–275. https://doi.org/10.1016/j.ijpharm.2011.05.008
- Koroleva M., Nagovitsina T., Yurtov E. Properties of nanocapsules obtained from oil-in-water nanoemulsions // Mendeleev Commun. 2015. V. 25. P. 389–390. https://doi.org/10.1016/j.mencom.2015.09.026
- Koroleva M., Portnaya I., Mischenko E., Abutbul-Ionita I., Kolik-Shmuel L., Danino D. Solid lipid nanoparticles and nanoemulsions with solid shell: Physical and thermal stability // J. Colloid Interface Sci. 2022. V. 610. P. 61–69. https://doi.org/10.1016/j.jcis.2021.12.010
- Izquierdo P., Feng J., Esquena J., Tadros T.F., Dederen J.C., Garcia M.J., Azemar N., Solans C. The influence of surfactant mixing ratio on nano-emulsion formation by the PIT method // J. Colloid Interface Sci. 2005. V. 285. № 1. P. 388–394. https://doi.org/10.1016/j.jcis.2004.10.047
- Tikhonov V.P., Shevchenko T.V., Rodina I.A., Beljankina E.J., Pligina K.L., Makarova M.N., Girina M.B. Method of evaluating irritating action and activity of natural, synthetic substances and ready preparations on chick embryos by method of ultrasonic dopplerography // RF patent: RU 2383888 C1. 2010.
- Mishchenko E.V., Timofeeva E.E., Artamonov A.S., Portnaya I.B., Koroleva M.Y. Nanoemulsions and nanocapsules with oleic acid // Colloid J. 2022. V. 84. № 1. P. 64–70. https://doi.org/10.1134/S1061933X22010082
Supplementary files
