Dynamic Surface Properties of Styrene and Hydrophobized 4-Vinylbenzyl Chloride Copolymers at the Air-Water Interface

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The kinetic dependences of surface tension, dilatational dynamic surface elasticity and ellipsometric angles of solutions of copolymers of styrene and 4-vinylbenzyl chloride modified with N,N-dimethyldodecylamine, as well as the micromophology of adsorption and spread layers of this polyelectrolyte were determined. All kinetic dependences of the dynamic surface elasticity were found to be monotonic, in contrast to the results for previously studied polyelectrolyte solutions without polystyrene fragments. The peculiarities of surface properties of the studied solutions may be related to the formation of microaggregates in the surface layer, preventing the formation of loops and tails of polymer chains at the interfacial boundary, and, consequently, the decrease in surface elasticity after the local maximum. The occurrence of aggregates with sizes of 1–4 nm in the Z-direction in the surface layer is also indicated by atomic force microscopy data. The obtained results confirm the earlier conclusions about the formation of aggregates in the surface layer of polyelectrolyte solutions containing sodium polystyrene sulfonate (PSS) fragments. A two-dimensional phase transition to a denser surface phase at surface pressures of 25–30 mN/m and the formation of aggregates with a size of 40 nm in the Z-direction were found for applied polyelectrolyte layers without styrene monomers on an aqueous substrate.

全文:

受限制的访问

作者简介

A. Khrebina

Санкт-Петербургский государственный университет

编辑信件的主要联系方式.
Email: st076362@student.spbu.ru
俄罗斯联邦, Санкт-Петербург

P. Vlasov

Санкт-Петербургский государственный университет

Email: st076362@student.spbu.ru
俄罗斯联邦, Санкт-Петербург

I. Zorin

Санкт-Петербургский государственный университет

Email: st076362@student.spbu.ru
俄罗斯联邦, Санкт-Петербург

A. Lezov

Санкт-Петербургский государственный университет

Email: st076362@student.spbu.ru
俄罗斯联邦, Санкт-Петербург

A. Rafikova

Санкт-Петербургский государственный университет

Email: st076362@student.spbu.ru
俄罗斯联邦, Санкт-Петербург

P. Chelushkin

Санкт-Петербургский государственный университет

Email: st076362@student.spbu.ru
俄罗斯联邦, Санкт-Петербург

B. Noskov

Санкт-Петербургский государственный университет

Email: st076362@student.spbu.ru
俄罗斯联邦, Санкт-Петербург

参考

  1. Ishimuro Y., Ueberreiter K. The surface tension of poly(acrylic acid) in aqueous solution // Colloid Polym Sci. 1980. Vol. 258, № 8. P. 928–931. https://doi.org/10.1007/BF01584922
  2. Yim H., Kent M., Matheson A., Ivkov R., Satija S., Majewski J., Smith G.S. Adsorption of poly(styrenesulfonate) to the air surface of water by neutron reflectivity // Macromolecules. 2000. Vol. 33, № 16. P. 6126–6133. https://doi.org/10.1021/ma000266q
  3. Yim H., Kent M.S., Matheson A., Stevens M.J., Ivkov R., Satija S., Majewski J., Smith G.S. Adsorption of sodium poly(styrenesulfonate) to the air surface of water by neutron and x-ray reflectivity and surface tension measurements: polymer concentration dependence // Macromolecules. 2002. Vol. 35, № 26. P. 9737–9747. https://doi.org/10.1021/ma0200468
  4. Owiwe M.T., Ayyad A.H., Takrori F.M. Surface tension of the oppositely charged sodium poly(styrene sulfonate)/benzyldimethylhexadecylammonium chloride and sodium poly(styrene sulfonate)/polyallylamine hydrochloride mixtures // Colloid Polym Sci. 2020. Vol. 298, № 9. P. 1197–1204. https://doi.org/10.1007/s00396-020-04692-7
  5. Dickhaus B.N., Priefer R. Determination of polyelectrolyte pKa values using surface-to-air tension measurements // Colloids Surf A: Physicochem Eng Asp. 2016. Vol. 488. P. 15–19. https://doi.org/10.1016/j.colsurfa.2015.10.015
  6. Okubo T., Kobayashi K. Surface tension of biological polyelectrolyte solutions // J Colloid Interface Sci. 1998. Vol. 205, № 2. P. 433–442. https://doi.org/10.1006/jcis.1998.5632
  7. Ríos H.E., González-Navarrete J., Vargas V., Urzúa M.D. Surface properties of cationic polyelectrolytes hydrophobically modified // Colloids Surf A: Physicochem Eng Asp. 2011. Vol. 384, № 1–3. P. 262–267. https://doi.org/10.1016/j.colsurfa.2011.03.063
  8. Millet F., Nedyalkov M., Renard B., Perrin P., Lafuma F., Benattar J.-J. Adsorption of hydrophobically modified poly(acrylic acid) sodium salt at the air/water interface by combined surface tension and x-ray reflectivity measurements // Langmuir. 1999. Vol. 15, № 6. P. 2112–2119. https://doi.org/10.1021/la981481r
  9. Théodoly O., Ober R., Williams C.E. Adsorption of hydrophobic polyelectrolytes at the air/water interface: Conformational effect and history dependence // The European Physical Journal E. 2001. Vol. 5, № 1. P. 51–58. https://doi.org/10.1007/s101890170086
  10. Noskov B.A., Bilibin A.Y., Lezov A. V., Loglio G., Filippov S.K., Zorin I.M., Miller R. Dynamic surface elasticity of polyelectrolyte solutions // Colloids Surf A: Physicochem Eng Asp. 2007. Vol. 298, № 1–2. P. 115–122. https://doi.org/10.1016/j.colsurfa.2006.12.003
  11. Noskov B.A., Nuzhnov S.N., Loglio G., Miller R. Dynamic surface properties of sodium poly(styrenesulfonate) solutions // Macromolecules. 2004. Vol. 37, № 7. P. 2519–2526. https://doi.org/10.1021/ma030319e
  12. Laschewsky A. Molecular concepts, self-organisation and properties of polysoaps // Polysoaps/Stabilizers/Nitrogen-15 NMR. Berlin/Heidelberg: Springer-Verlag, 1995. P. 1–86. https://doi.org/10.1007/BFb0025228
  13. Summers M., Eastoe J., Davis S., Du Z., Richardson R.M., Heenan R.K., Steytler D., Grillo I. Polymerization of cationic surfactant phases // Langmuir. 2001. Vol. 17, № 17. P. 5388–5397. https://doi.org/10.1021/la010541h
  14. Summers M., Eastoe J., Richardson R.M. Concentrated polymerized cationic surfactant phases // Langmuir. 2003. Vol. 19, № 16. P. 6357–6362. https://doi.org/10.1021/la034184h
  15. Moussa W., Colombani O., Benyahia L., Nicolai T., Chassenieux C. Structure of a self-assembled network made of polymeric worm-like micelles // Polymer Bulletin. 2016. Vol. 73, № 10. P. 2689–2705. https://doi.org/10.1007/s00289-016-1615-5
  16. Moussa W. Self-assembly of comb-like amphiphilic copolymers in aqueous solution // Polymer Bulletin. 2017. Vol. 74, № 4. P. 1405–1419. https://doi.org/10.1007/s00289-017-1910-9
  17. Talantikite M., Aoudia K., Benyahia L., Chaal L., Chassenieux C., Deslouis C., Gaillard C., Saidani B. Structural, viscoelastic, and electrochemical characteristics of self-assembled amphiphilic comblike copolymers in aqueous solutions // J Phys Chem B. 2017. Vol. 121, № 4. P. 867–875. https://doi.org/10.1021/acs.jpcb.6b11237
  18. Dutertre F., Gaillard C., Chassenieux C., Nicolai T. Branched wormlike micelles formed by self-assembled comblike amphiphilic copolyelectrolytes // Macromolecules. 2015. Vol. 48, № 20. P. 7604–7612. https://doi.org/10.1021/acs.macromol.5b01503
  19. Dutertre F., Benyahia L., Chassenieux C., Nicolai T. Dynamic mechanical properties of networks of wormlike micelles formed by self-assembled comblike amphiphilic copolyelectrolytes // Macromolecules. 2016. Vol. 49, № 18. P. 7045–7053. https://doi.org/10.1021/acs.macromol.6b01369
  20. Merland T., Drou C., Legoupy S., Benyahia L., Schmutz M., Nicolai T., Chassenieux C. Self-Assembly in water of C60 fullerene into isotropic nanoparticles or nanoplatelets mediated by a cationic amphiphilic polymer // J Colloid Interface Sci. 2022. Vol. 624. P. 537–545. https://doi.org/10.1016/j.jcis.2022.05.113
  21. Wu A., Gao X., Liang L., Sun N., Zheng L. Interaction among worm-like micelles in polyoxometalate-based supramolecular hydrogel // Langmuir. 2019. Vol. 35, № 18. P. 6137–6144. https://doi.org/10.1021/acs.langmuir.9b00627
  22. Zhang X., Shen Y., Shen G., Zhang C. Simple and effective approach to prepare an epoxy-functionalized polymer and its application for an electrochemical immunosensor // ACS Omega. 2021. Vol. 6, № 5. P. 3637–3643. https://doi.org/10.1021/acsomega.0c05183
  23. Limouzin-Morel C., Dutertre F., Moussa W., Gaillard C., Iliopoulos I., Bendejacq D., Nicolai T., Chassenieux C. One and two dimensional self-assembly of comb-like amphiphilic copolyelectrolytes in aqueous solution // Soft Matter. 2013. Vol. 9, № 37. P. 8931. https://doi.org/10.1039/C3SM51895G
  24. Noskov B.A., Akentiev A. V., Bilibin A.Y., Zorin I.M., Miller R. Dilational surface viscoelasticity of polymer solutions // Adv Colloid Interface Sci. 2003. Vol. 104, № 1–3. P. 245–271. https://doi.org/10.1016/S0001-8686(03)00045-9
  25. Langmuir I., Schaefer V.J. Activities of urease and pepsin monolayers // J Am Chem Soc. 1938. Vol. 60, № 6. P. 1351–1360. https://doi.org/10.1021/ja01273a023
  26. Novikova A.A., Vlasov P.S., Lin S.Y., Sedláková Z., Noskov B.A. Dynamic surface properties of poly(methylalkyldiallylammonium chloride) solutions // J Taiwan Inst Chem Eng. 2017. Vol. 80. P. 122–127. https://doi.org/10.1016/j.jtice.2017.08.042
  27. Manning-Benson S., Bain C.D., Darton R.C. Measurement of dynamic interfacial properties in an overflowing cylinder by ellipsometry // J Colloid Interface Sci. 1997. Vol. 189, № 1. P. 109–116.
  28. Tummino A., Toscano J., Sebastiani F., Noskov B.A., Varga I., Campbell R.A. Effects of aggregate charge and subphase ionic strength on the properties of spread polyelectrolyte/surfactant films at the air/water interface under static and dynamic conditions // Langmuir. 2018. Vol. 34, № 6. P. 2312–2323. https://doi.org/10.1021/acs.langmuir.7b03960

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Structure of polymers used in this work

下载 (54KB)
3. Fig. 2. Kinetic dependences of surface tension of dialysed solutions of p3 with NaCl addition. Polyelectrolyte concentrations: 0.030 wt% (squares), 0.010 wt% + 0.010 M NaCl (triangles), 0.010% + 0.013 M NaCl (circles), 0. 010 wt% + 0.016 M NaCl (inverted triangles), 0.010 wt% + 0.020 M NaCl (rhombuses), 0.010 wt% + 0.030 M NaCl (stars)

下载 (95KB)
4. Fig. 3. Kinetic dependences of dynamic surface elasticity of dialysed solutions of p3 with NaCl addition. Polyelectrolyte concentrations: 0.030 wt% (squares), 0.010 wt% + 0.010 M NaCl (triangles), 0.010 wt% + 0.013 M NaCl (circles), 0. 010 wt% + 0.016 M NaCl (inverted triangles), 0.010 wt% + 0.020 M NaCl (rhombuses), 0.010 wt% + 0.030 M NaCl (stars)

下载 (88KB)
5. Fig. 4. AFM images of p3 adsorption films at different concentrations of NaCl 0 (a) and 0.05 M (b) and polyelectrolyte 0.05 wt% (a) and 0.01 wt% (b)

下载 (264KB)
6. Fig. 5. Dependence of the dynamic surface elasticity (ε) on the surface pressure (π) for the applied monolayer p1. Grey triangles correspond to the dynamic surface elasticity modulus, unfilled squares correspond to the real part of the dynamic surface elasticity, and black squares correspond to the imaginary part of the dynamic surface elasticity

下载 (70KB)
7. Fig. 6. Dependence of the dynamic surface elasticity (ε) on the surface pressure (π) for the applied monolayer p2. Grey triangles correspond to the modulus of dynamic surface elasticity, unfilled squares correspond to the real part of dynamic surface elasticity, and black squares correspond to the imaginary part of dynamic surface elasticity

下载 (60KB)
8. Fig. 7. Compression/stretch isotherms for the applied p1 monolayer. The black, dashed and grey lines correspond to the first, second and third compression/stretching cycles, respectively

下载 (69KB)
9. Fig. 8. Dependence of the dynamic surface elasticity (ε) on the surface pressure (π) for the applied p4 monolayer. Grey triangles correspond to the dynamic surface elasticity modulus, unfilled squares correspond to the real part of the dynamic surface elasticity, and black squares correspond to the imaginary part of the dynamic surface elasticity

下载 (72KB)
10. Fig. 9. Compression/stretch isotherms for the deposited p4 monolayer. Black, dashed and grey lines correspond to the first, second and third compression/stretching cycles, respectively

下载 (67KB)

版权所有 © Russian Academy of Sciences, 2024