Aggregate formation and magnetic separation of polyethylene microparticles from aqueous solutions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Plastic pollution is an emerging concern worldwide. To determine the amount and composition of contaminating polymer microparticles, the preparation of representative water samples is required. A new method of magnetic separation of polyethylene microparticles (MPE, 10–200 μm) by aggregation with magnetic nanoparticles has been studied. Composite magnetic nanoparticles with a magnetite core and a silica shell functionalized with amino groups (Fe3O4@SiO2-NH2, dhydr = 200 nm) have been synthesized. These nanoparticles can form aggregates with MPEs due to electrostatic interactions. The heteroaggregates can be removed from water using a gradient magnetic field.

The influence of solved salts (NaCl, Na2SO4, NaH2PO4, CaCl2) and surfactant sodium dodecyl sulfate (SDS) on the separation conditions of polyethylene microparticles from aqueous suspensions was studied. The efficiency of MPE magnetic separation from aqueous suspensions with salts NaCl, NaH2PO4 (c = 10 mM), CaCl2 (c = 10 and 100 mM) and SDS (c = 3 mM) was at least 98% for a concentration of magnetic particles of c = 0.01 g/L, the preliminary exposure for 30 minutes and the magnetic sedimentation duration for 15 minutes. As the concentration of NaCl and NaH2PO4 increased up to 100 mM or in the presence of Na2SO4, the efficiency of MPE magnetic separation decreased. The separation efficiency of MPE by the magnetic filtration was at least 80% from a model solution of river and sea water within 5 minutes.

Texto integral

Acesso é fechado

Sobre autores

M. Filinkova

Институт физики металлов им. М.Н. Михеева УрО РАН

Autor responsável pela correspondência
Email: filinkova-ms@yandex.ru
Rússia, ул. С. Ковалевской, 18, Екатеринбург, 620108

Iu. Bakhteeva

Институт физики металлов им. М.Н. Михеева УрО РАН

Email: filinkova-ms@yandex.ru
Rússia, ул. С. Ковалевской, 18, Екатеринбург, 620108

I. Medvedeva

Институт физики металлов им. М.Н. Михеева УрО РАН; Уральский государственный горный университет

Email: filinkova-ms@yandex.ru
Rússia, ул. С. Ковалевской, 18, Екатеринбург, 620108; ул. Куйбышева, 30, Екатеринбург, 620144

I. Byzov

Институт физики металлов им. М.Н. Михеева УрО РАН

Email: filinkova-ms@yandex.ru
Rússia, ул. С. Ковалевской, 18, Екатеринбург, 620108

A. Minin

Институт физики металлов им. М.Н. Михеева УрО РАН

Email: filinkova-ms@yandex.ru
Rússia, ул. С. Ковалевской, 18, Екатеринбург, 620108

I. Kurmachev

Институт физики металлов им. М.Н. Михеева УрО РАН

Email: filinkova-ms@yandex.ru
Rússia, ул. С. Ковалевской, 18, Екатеринбург, 620108

Bibliografia

  1. Costa C.Q. V., Cruz J., Martins J., Teodósio M. A.A., Jockusch S., Ramamurthy V., da Silva J. P. Fluorescence sensing of microplastics on surfaces // Environ. Chem. Lett. 2021. V. 19. P. 1797–1802. https://doi.org/10.1007/s10311-020-01136-0
  2. Caldwell J., Taladriz-Blanco P., Lehner R., Lubskyy A., Ortuso R. D., Rothen-Rutishauser B., Petri-Fink A. The micro-, submicron-, and nanoplastic hunt: A review of detection methods for plastic particles // Chemosphere. 2022. V. 293. P. 133514. https://doi.org/10.1016/j.chemosphere.2022.133514
  3. Lee J., Chae K.-J. A systematic protocol of microplastics analysis from their identification to quantification in water environment: A comprehensive review // J. Hazard. Matter. 2021. V. 5. № 403. P. 124049. https://doi.org/10.1016/j.jhazmat.2020.124049
  4. Колончин К.В., Педченко А.П., Беляев В.А. Исследования содержания микропластика в воде и промысловых рыбах: от научного поиска к масштабному мониторингу // ТРУДЫ ВНИРО. 2023. Т. 193. С. 162–173. https://doi.org/10.36038/2307-3497-2023-193-162-173
  5. Parashar N., Hait S. Recent advances on microplastics pollution and removal from wastewater systems: a critical review // J. Environ. Manag. 2023. V. 340. P. 118014. https://doi.org/10.1016/j.jenvman.2023.118014
  6. Pan Y., Gao Sh-H., Ge Ch, Gao Q., Huang S., Kang Y., Luo G., Zhang Z., Fan L., Zhu Y., Wang A.-J. Removing microplastics from aquatic environments: a critical review // Environ. Sci. Ecotechnol. 2023. V. 13. P. 100222. https://doi.org/10.1016/j.ese.2022.100222
  7. Hildebrandt L., Mitrano D. M., Zimmermann T., Pröfrock D. A nanoplastic sampling and enrichment approach by continuous flow centrifugation // Front. Environ. Sci. 2020. V. 8. https://doi.org/10.3389/fenvs.2020.00089
  8. Padervand M., Lichtfouse E., Robert D., Wang Ch. Removal of microplastics from the environment. A review // Environ. Chem. Lett. 2020. V. 18. P. 807–828. https://doi.org/10.1007/s10311-020-00983-1
  9. Shen M., Song B., Zhu Y., Zeng G., Zhang Y., Yang Y., Wen X., Chen M., Yi H. Removal of microplastics via drinking water treatment: current knowledge and future directions // Chemosphere. 2020. V. 251. P. 126612. https://doi.org/10.1016/j.chemosphere.2020.126612
  10. Grbic J., Nguyen B., Guo E., You J. B., Sinton D., Rochman Ch. M. Magnetic extraction of microplastics from environmental samples // Environ. Sci. Technol. Lett. 2019. V. 6. P. 68−72. https://doi.org/10.1021/acs.estlett.8b00671
  11. Surette M. C., Mitrano D. M., Rogers K. R. Extraction and concentration of nanoplastic particles from aqueous suspensions using functionalized magnetic nanoparticles and a magnetic flow cell // Microplast. Nanoplast. 2023. V. 3. № 2. P. 1–12.https://doi.org/10.1186/s43591-022-00051-1
  12. Rhein F., Scholl F., Nirschl H. Magnetic seeded filtration for the separation of fine polymer particles from dilute suspensions: microplastics // Chem. Eng. Sci. 2019. V. 207. P. 1278–1287. https://doi.org/10.1016/j.ces.2019.07.052
  13. Bakhteeva I.A., Medvedeva I.V., Filinkova M.S., Byzov I.V., Uimin M.A., Tseitlin E. Magnetic nanoparticles for monitoring microplastics pollution in the surface waters // RTA. 2022. V. 17. P. 458–463. https://doi.org/10.24412/1932-2321-2022-470-458-463
  14. Martin L.M.A., Sheng J., Zimba P.V., Zhu L., Fadare O.O., Haley C., Wang M., Phillips T.D., Conkle J., Xu W. Testing an iron oxide nanoparticle-based method for magnetic separation of nanoplastics and microplastics from water // Nanomaterials. 2022. V. 12. P. 2348. https://doi.org/10.3390/nano12142348
  15. Pasanen F., Fuller R. O., Maya F. Sequential extraction, depolymerization and quantification of polyethylene terephthalate nanoplastics using magnetic ZIF-8 nanocomposites // Chem. Eng. J. 2024. V. 490. P. 151453. https://doi.org/10.1016/j.cej.2024.151453
  16. Relle S., Grant S.B. One-step process for particle separation by magnetic seeding // Langmuir. 1998. V. 14. № 9. P. 2316–2328. https://doi.org/10.1021/la970858a
  17. Li Y., Wang J., Zhao Y., Luan Zh. Research on magnetic seeding flocculation for arsenic removal by superconducting magnetic separation // Sep. Pur. Technol. 2010. V. 73. P. 264–270. https://doi.org/10.1016/j.seppur.2010.04.011
  18. Svoboda J. Magnetic techniques for the treatment of materials // Kluwer Academic Publishers, London. 2004.
  19. Lim J.K., Yeap S.P., Low S.Ch. Challenges associated to magnetic separation of nanomaterials at low field gradient // Sep. Purif. Technol. 2014. V. 123. P. 171–174. https://doi.org/10.1016/j.seppur.2013.12.038
  20. Medvedeva I., Bakhteeva Iu., Zhakov S., Revvo A., Uimin M., Yermakov A., Byzov I., Mysik A., Shchegoleva N. Separation of Fe 3 O 4 nanoparticles from water by sedimentation in a gradient magnetic field // J. Water Res. Protect. 2015. V. 7. P. 111–118. https://doi.org/10.4236/jwarp.2015.72009
  21. Yavuz C.T., Mayo J.T., Yu W.W., Prakash A., Falkner J.C., Yean S., Cong L., Shipley H.J., Kan A., Tomson M., Natelson D., Colvin V.L. Low-field magnetic separation of monodisperse Fe 3 O 4 nanocrystals // Science. 2006. V. 314. P. 964–967. https://doi.org/10.1126/science.1131475
  22. Kelland D.R. Magnetic separation of nanoparticles // IEEE T. Magn. 1998. V. 34 № 4. P. 2123–2125. https://doi.org/10.1109/20.706824
  23. Ditsch A., Lindenmann S., Laibinis P.E., Wang D.I.C., Hatton T.A. High-gradient magnetic separation of magnetic nanoclusters // Ind. Eng. Chem. Res. 2005. V. 44. P. 6824–6836. https://doi.org/10.1021/ie048841s
  24. Bakhteeva Iu.A., Medvedeva I.V., Filinkova M.S., Byzov I.V., Zhakov S.V., Uimin M.A., Yermakov A.E. Magnetic sedimentation of nonmagnetic TiO 2 nanoparticles in water by heteroaggregation with Fe-based nanoparticles // Sep. Pur. Technol. 2019. V. 218. P. 156–163. https://doi.org/10.1016/j.seppur.2019.02.043
  25. Bakhteeva Iu.A., Medvedeva I.V., Zhakov S.V., Byzov I.V., Filinkova M.S., Uimin M. A., Murzakaev A.M. Magnetic separation of water suspensions containing TiO 2 photocatalytic nanoparticles // Sep. Pur. Technol. 2021. V. 269. P. 118716. https://doi.org/10.1016/j.seppur.2021.118716
  26. Bakhteeva I.A., Medvedeva I.V., Filinkova M.S., Byzov I.V., Minin A.S., Zhakov S.V., Uimin M.A., Patrakov E.I., Novikov S.I., Suntsov A.Yu., Demin A.M. Removal of microplastics from water by using magnetic sedimentation // Int. J. Environ. Sci. Technol. 2023. V. 20. P. 11837–11850. https://doi.org/10.1007/s13762-023-04776-1
  27. Singh N., Tiwari E., Khandelwal N., Darbha G.K. Understanding the stability of nanoplastics in aqueous environments: Effect of ionic strength, temperature, dissolved organic matter, clay, and heavy metals // Environ. Sci. Nano. 2019. V. 6. P. 2968–2976. https://doi.org/10.1039/c9en00557a
  28. Shams M., Alam I., Chowdhury I. Aggregation and stability of nanoscale plastics in aquatic environment // Water Res. 2020. V. 171. P. 115401. https://doi.org/10.1016/j.watres.2019.115401
  29. Yan R., Lin S., Jiang W., Yu X., Zhang L., Zhao W., Sui Q. Effect of aggregation behavior on microplastic removal by magnetic Fe 3 O 4 nanoparticles // Sci. Total Environ. 2023. V. 898 P. 165431. http://doi.org/10.1016/j.scitotenv.2023.165431
  30. Li S., Liu H., Gao R., Abdurahman A., Dai J., Zeng F. Aggregation kinetics of microplastics in aquatic environment: Complex roles of electrolytes, pH, and natural organic matter // Environ. Pollut. 2018. V. 237. P. 126–132. https://doi.org/10.1016/j.envpol.2018.02.042
  31. Li Y., Wang X., Fu W., Xia X., Liu C., Min J., Zhang W., Crittenden C.J. Interactions between nano/microplastics and suspended sediment in water: implications on aggregation and settling // Water Res. 2019. V. 161. P. 486–495. https://doi.org/10.1016/j.watres.2019.06.018
  32. Cai L., Hu L., Shi H., Ye J., Zhang Y., Kim H. Effects of inorganic ions and natural organic matter on the aggregation of nanoplastics // Chemosphere. 2018.V. 197. P. 142–151. https://doi.org/10.1016/j.chemosphere.2018.01.052
  33. Fred-Ahmadu O.H., Bhagwat G., Oluyoye I., Benson N.U., Ayejuyo O.O., Palanisami T. Interaction of chemical contaminants with microplastics: Principles and perspectives // Sci. Total. Environ. 2020. V. 706. P. 135978. https://doi.org/10.1016/j.scitotenv.2019.135978
  34. Jardak K., Drogui P., Daghrir R. Surfactants in aquatic and terrestrial environment: occurrence, behavior, and treatment processes // Environ. Sci. Pollut. Res. 2016. V. 23. P. 3195–3216. https://doi.org/10.1007/s11356-015-5803-x
  35. Shi X., Zhang X., Gao W., Zhang Y., He D. Removal of microplastics from water by magnetic nano- Fe 3 O 4 // Sci. Total. Environ. 2022. V. 802. P. 149838. https://doi.org/10.1016/j.scitotenv.2021.149838
  36. Tang Y., Zhang S., Su Y., Wu D., Zhao Y., Xie B. Removal of microplastics from aqueous solutions by magnetic carbon nanotubes // Chem. Eng. J. 2021. V. 406. P. 126804. https://doi.org/10.1016/j.cej.2020.126804
  37. Zhao H., Huang X., Wang L., Zhao X., Yan F., Yang Y., Li G., Gao P., Ji P. Removal of polystyrene nanoplastics from aqueous solutions using a novel magnetic material: adsorbability, mechanism, and reusability // Chem. Eng. J. 2022. V. 430. P. 133122. https://doi.org/10.1016/j.cej.2021.133122
  38. Bakhteeva Iu.A., Filinkova M.S, Medvedeva I.V., Podvalnaya N.V., Byzov I.V., Zhakov S.V., Uimin M.A., Kurmachev I.A. Design and application of environmentally friendly composite magnetic particles for microplastic extraction from water media // J. Environ. Chem. Eng. 2024. V. 12. № 5. P. 113287. https://doi.org/10.1016/j.jece.2024.113287
  39. Huang Y.-F., Wang Y.-F., Yan X.-P. Amine-functionalized magnetic nanoparticles for rapid capture and removal of bacterial pathogens // Environ. Sci. Technol. 2010. V. 44. P. 7908–7913. https://doi.org/10.1021/es102285n
  40. Мурашкевич А.Н., Лавицкая А.С., Баранникова Т.И., Жарский И.М. Инфракрасные спектры поглощения и структура композитов TiO 2 SiO 2 // Ж. Прикл. Спектроскоп. 2008. Т. 75. №5.
  41. Jahanbakhsh Z., Hosseinzadeh H., Masoumi B. Synthesis of carboxymethyl β-cyclodextrin bonded Fe 3 O 4 @ SiO 2 NH 2 core-shell magnetic nanocomposite adsorbent for effective removal of Pb(II) from wastewater // J. Sol-Gel Sci. Technol. 2021. V. 99. P. 230–242. https://doi.org/10.1007/s10971-021-05569-z
  42. Hakim A., Kobayashi M. Aggregation and aggregate strength of microscale plastic particles in the presence of natural organic matter: effects of ionic valence // J. Polym. Environ. 2021. V. 29. P. 1921–1929. https://doi.org/10.1007/s10924-020-01985-4
  43. Hafizah M. A. E., Riyadi A. F., Manaf A., Andreas. Particle size reduction of polyaniline assisted by anionic emulsifier of Sodium Dodecyl Sulphate (SDS) through emulsion polymerization // IOP Conf. Series: Materials Science and Engineering 2019. V. 515. P. 012080. https://doi.org/10.1088/1757-899X/515/1/012080
  44. Zhang P., Shi H., Xiuxiu R., Guangren Q. Na-dodecylsulfate modification of hydrocalumite and subsequent effect on the structure and thermal decomposition //J. Thermal. Anal. Calorim. 2011. V. 104. № 2. P. 743–747. https://doi.org/10.1007/s10973-010-1001-8
  45. Sammalkorpi M., Karttunen M., Haataja M. Ionic surfactant aggregates in saline solutions: Sodium Dodecyl Sulfate (SDS) in the presence of excess Sodium Chloride (NaCl) or Calcium Chloride ( CaCl 2 ) // J. Phys. Chem. B.2009. V. 113. № 17. P. 5863–5870. https://doi.org/10.1021/jp901228v
  46. Shen Q., Wei H., Wang L., Zhou Y., Zhao Y., Zhang Zh., Wang D., Xu G., Xu D. Crystallization and aggregation behaviors of Calcium Carbonate in the presence of Poly(vinylpyrrolidone) and Sodium Dodecyl Sulfate // J. Phys. Chem. B. 2005. V. 109. № 39. P. 18342–18347. https://doi.org/10.1021/jp052094a
  47. Yan H., Yuan Sh.-L., Xu G.-Y., Liu Ch.-B. Effect of Ca 2+ and Mg 2+ ions on surfactant solutions investigated by molecular dynamics simulation // Langmuir. 2010. V. 26. № 13. P. 10448–10459. https://doi.org/10.1021/la100310w
  48. Zhang Y., Chen Y., Westerhoff P., Crittenden J. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles // Water Res. 2009. V. 43. № 17. P. 4249–4257. https://doi.org/10.1016/j.watres.2009.06.005
  49. Liu J., Dai Ch., Hu Y. Aqueous aggregation behavior of citric acid coated magnetite nanoparticles: Effects of pH, cations, anions, and humic acid // Environ. Res. 2018. V. 161. P. 49–60. https://doi.org/10.1016/j.envres.2017.10.045
  50. Wang H., Zhao X., Han X., Tang Zh., Liu Sh., Guo W., Deng Ch., Guo Q., Wang H., Wu F., Meng X., Giesy J.P. Effects of monovalent and divalent metal cations on the aggregation and suspension of Fe 3 O 4 magnetic nanoparticles in aqueous solution // Sci. Total Environ. 2017. V. 586. P. 817–826. https://doi.org/10.1016/j.scitotenv.2017.02.060
  51. Bakhteeva Iu.A., Medvedeva I.V., Uimin M.A., Byzov I.V., Zhakov S.V., Yermakov A.E., Shchegoleva N.N. Magnetic sedimentation and aggregation of Fe 3 O 4 @ SiO 2 nanoparticles in water medium // Sep. Pur. Technol. 2016. V. 159. P. 35–42. https://doi.org/10.1016/j.seppur.2015.12.043

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. IR spectra of MPE and MNP (a); SEM image of MPE (b); TEM image of MNP (c).

Baixar (771KB)
3. Fig. 2. Dependence of the separation efficiency of MPE in aqueous suspensions of MPE/SDS/PS on time τ during gravitational settling, c(PS) = 10 mM (a, c), c(PS) = 100 mM (b, d).

Baixar (242KB)
4. Fig. 3. Dependence of the efficiency of magnetic separation of MPE from aqueous suspensions of MPE/MNP/SDS/PS on the concentration of natural salts, c(MNP) = 0.005 g/l (a), 0.01 g/l (b), 0.05 g/l (c), c(PS) = 10 and 100 mM; c(SDS) = 3 mM. Duration of preliminary holding t = 30 minutes, duration of magnetic sedimentation τ = 15 minutes.

Baixar (162KB)
5. Fig. 4. Dependence of the efficiency of magnetic separation of MPE from aqueous suspensions of MPE/MNP/SDS/PS on the duration of preliminary holding t, s(PS) = 10 mM (a) and 100 mM (b), s(SDS) = 3 mM, s(MNP) = 0.01 g/l. Duration of magnetic sedimentation τ = 15 minutes.

Baixar (169KB)
6. Fig. 5. Dependence of the efficiency of magnetic separation of MPE from aqueous suspensions of MPE/MNP/SDS/PS on the duration of magnetic sedimentation τ, s(PS) = 10 mM (a) and 100 mM (b), s(SDS) = 3 mM, s(MNP) = 0.01 g/l. Duration of preliminary holding t = 30 minutes.

Baixar (147KB)
7. Fig. 6. Micrographs of MPE/MNP/SDS/NaCl suspensions at MNP concentrations c = 0.005 and 0.05 g/l without preliminary holding (a, g), after preliminary holding for t = 30 min (b, d) and after magnetic separation for 15 min (c, e). c(NaCl) = 10 mM, c(SDS) = 3 mM.

Baixar (1MB)
8. Fig. 7. IR spectra of dry precipitate obtained from aqueous suspension of SDS/CaCl2 and SDS powder, c(CaCl2) = 100 mM, c(SDS) = 3 mM.

Baixar (142KB)
9. Fig. 8. Micrographs of MPE/MNP/SDS/CaCl2 suspensions without preliminary holding (a), after preliminary holding for t = 30 min (b) and after magnetic separation for 15 minutes (c). c(CaCl2) = 10 mM, c(SDS) = 3 mM, c(MNP) = 0.01 g/l.

Baixar (755KB)
10. Fig. 9. Optical absorption spectra obtained by UV spectrophotometry for aqueous suspensions of the MPE/SDS/NaCl composition at concentrations of c(NaCl) = 0 mM (a), 10 mM (b), 100 mM (c). The duration of preliminary aggregation was 0 minutes (black), 30 minutes (red), 300 minutes (blue), c(SDS) = 3 mM.

Baixar (133KB)
11. Fig. 10. Dependence of the zeta potential of MNPs on the concentration of salts NaCl, Na2SO4, NaH2PO4, CaCl2 in the MNP/PS solution.

Baixar (103KB)
12. Fig. 11. Micrographs of MPE/MNP/SDS/Na2SO4 suspensions without preliminary holding (a), after preliminary holding for t = 30 (b) and 4200 (d) minutes, and after magnetic separation for 15 minutes (c, d). c(Na2SO4) = 10 mM, c(SDS) = 3 mM, c(MNP) = 0.01 g/l.

Baixar (1MB)
13. Fig. 12. Dependence of the separation efficiency of MPE from model aqueous suspensions on the concentration of MPE during gravitational settling of MPE/SDS/solution 1 (2) and magnetic sedimentation of MPE/MNP/SDS/solution 1 (2), 1 – river water, 2 – sea water, c(SDS) = 3 mM, c(MNP) = 0.01 g/l. Duration of preliminary holding t = 30 minutes.

Baixar (336KB)
14. Fig. 13. Dependence of the separation efficiency of MPE from model aqueous suspensions of MPE/MNP/SDS/solution 1 (2) on the separation time τ in magnetic fields, 1 – river water, 2 – sea water, c(SDS) = 3 mM, c(MNP) = 0.01 g/l. Duration of preliminary holding t = 30 minutes.

Baixar (417KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024