Providing a special thermal environment of the ART-XC mirror X-ray telescope as a necessary condition for obtaining significant scientific results

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article presents the main significant scientific results obtained by the first Russian reflecting X-ray telescope ART-XC named M.N. Pavlinsky. This telescope has been operating as part of the observatory Spektr-RG since 2019. It is shown that the prerequisite for obtaining these results was to maintain a special thermal regime of telescope components with high accuracy and stability. The problems of telescope thermal control are presented. The engineering solutions and control algorithms that allowed solving these problems in ART-XC are described. Experimental, including flight data, illustrating the implementation of these solutions are presented. Recommendations on thermal control systems for similar telescopes are given.

About the authors

M. V. Buntov

Space Research Institute of the Russian Academy of Sciences

Author for correspondence.
Email: danila_gamkov@cosmos.ru
Moscow

N. P. Semena

Space Research Institute of the Russian Academy of Sciences

Email: danila_gamkov@cosmos.ru
Moscow

D. M. Gamkov

Space Research Institute of the Russian Academy of Sciences

Email: danila_gamkov@cosmos.ru
Moscow

E. B. Gurova

Space Research Institute of the Russian Academy of Sciences

Email: danila_gamkov@cosmos.ru
Moscow

V. A. Lipilin

Space Research Institute of the Russian Academy of Sciences

Email: danila_gamkov@cosmos.ru
Moscow

A. M. Pristash

Space Research Institute of the Russian Academy of Sciences

Email: danila_gamkov@cosmos.ru
Moscow

A. N. Semena

Space Research Institute of the Russian Academy of Sciences

Email: danila_gamkov@cosmos.ru
Moscow

V. V. Tambov

Space Research Institute of the Russian Academy of Sciences

Email: danila_gamkov@cosmos.ru
Moscow

D. V. Serbinov

Space Research Institute of the Russian Academy of Sciences

Email: danila_gamkov@cosmos.ru
Moscow

References

  1. Семена Н.П. Значимость тепловых режимов астрофизических приборов для решения задач внеатмосферной астрономии // Косм. исслед. 2018. Т. 56. № 4. С. 311–326. https://doi.org/10.31857/S002342060000349-1
  2. Pavlinsky M., Tkachenko A., Levin V. et al. The ART-XC telescope on board the SRG observatory // Astronomy and Astrophysics. 2021. V. 650. Art. ID A42. https://doi.org/10.1051/0004-6361/202040265
  3. Павлинский М., Ткаченко А., Левин В. и др. Телескоп ART-XC на борту обсерватории СРГ // Письма в Астрономический журнал. 2022. Т. 48. № 5. С. 357–390. https://doi.org/10.31857/S0320010822050011
  4. Sunyaev R., Arefiev V., Babyshkin V. et al. SRG X-ray orbital observatory – its telescopes and first scientific results // Astronomy and Astrophysics. 2021. V. 656. Art. ID A132. https://doi.org/10.1051/0004-6361/202141179
  5. Сюняев Р., Арефьев В., Бабышкин В. и др. Космическая обсерватория Спектр-РГ: ее телескопы и первые научные результаты // Письма в Астрономический журнал. 2022. Т. 48. № 5. С. 301–356. https://doi.org/10.31857/S0320010822050023
  6. Predehl P., Andritschke R., Arefiev V. et al. The eROSITA X-ray telescope on SRG // Astronomy and Astrophysics. 2021. V. 647. Art. ID A1. https://doi.org/10.1051/0004-6361/202039313
  7. Sazonov S., Burenin R., Filippova E. et al. SRG/ART-XC all-sky X-ray survey: catalog of sources detected during the first five surveys // Astronomy and Astrophysics. 2024. V. 687. Art. ID A183. https://doi.org/10.1051/0004-6361/202348950
  8. Semena A., Mereminskiy I., Lutovinov A. et al. SRG/ART-XC Galactic Bulge deep survey. II. Catalogue of point sources // MNRAS. 2024. V. 529. Iss. 2. P. 941–952. https://doi.org/10.1093/mnras/stae189
  9. Molkov S.V., Lutovinov A.A., Tsygankov S.S. et al. Discovery of SRGA J144459.2−604207 with the SRG/ART-XC telescope: a well-tempered bursting accreting millisecond X-ray pulsar // Astronomy and Astrophysics. 2024. V. 690. Art. ID A353. https://doi.org/10.1051/0004-6361/202450581
  10. Frederiks D., Svinkin D., Lysenko A.L. et al. Properties of the extremely energetic GRB 221009A from Konus-WIND and SRG/ART-XC observations // Astrophysical Journal Letters. 2023. V. 949. Iss. 1. https://doi.org/10.3847/2041-8213/acd1eb
  11. Kishalay D., Mereminskiy I., Roberto S. et al. SRGA J181414.6-225604: a new Galactic symbiotic X-ray binary outburst triggered by an intense mass-loss episode of a heavily obscured Mira variable // Astrophysical J. V. 935. Iss. 1. https://doi.org/10.3847/1538-4357/ac7c6e
  12. Zaznobin I., Sazonov S., Burenin R. et al. Identification of three cataclysmic variables detected by the ART-XC and eROSITA telescopes on board the SRG during the all-sky X-ray survey // Astronomy and Astrophysics. 2022. V. 661. Art. ID A39. https://doi.org/10.1051/0004-6361/202141777
  13. Mereminskiy I., Dodin A., Lutovinov A. et al. Peculiar X-ray transient SRGA J043520.9+552226/AT2019wey discovered with SRG/ART-XC // Astronomy and Astrophysics. 2022. V. 661. Art. ID A32. https://doi.org/10.1051/0004-6361/202141410
  14. Lutovinov A., Tsygankov A., Mereminskiy I. et al. SRG/ART-XC discovery of SRGA J204318.2+443815: towards the complete population of faint X-ray pulsars // Astronomy and Astrophysics. 2022. V. 661. Art. ID A28. https://doi.org/10.1051/0004-6361/202141630
  15. Zakharov E., Barinov V., Burenin R. et al. Constraints on the parameters of keV-scale mass annihilating dark matter obtained with SRG/ART-XC observations // Physical Review D. 2024. V. 110. Iss. 12. Art. ID 123026. https://doi.org/10.1103/PhysRevD.110.123026
  16. Семена Н.П., Сербинов Д.В., Яскович А.Л. и др. Влияние теплового режима зеркала косого падения на его характеристики // Приборы и техника эксперимента. 2018. Т. 61. № 3. С. 100–110. https://doi.org/10.7868/S0032816218020222
  17. Левин В.В., Кривченко А.В., Кузнецова М.В. и др. Детекторы и интегральные схемы орбитальных телескопов // Успехи физических наук. 2024. Т. 194. № 4. С. 404–415. https://doi.org/10.3367/UFNr.2023.04.039587
  18. Chirco P., Zanarini M., Caroli E. et al. Comparative evaluation of the temperature dependence of different noise sources in CdTe detectors // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1996. V. 380. Iss. 1–2. P. 127–131. https://doi.org/10.1016/S0168-9002(96)00293-8
  19. Семена Н.П., Бунтов М.В. Обеспечение теплового режима космического рентгеновского телескопа методом поиска оптимальных решений // Тепловые процессы в технике. 2020. Т. 12. № 8. С. 351–363. https://doi.org/10.34759/tpt-2020-12-8-351-363
  20. Semena N., Pavlinsky M., Buntov M. et al. ART-XC/SRG: results of thermo-vacuum tests // Proc. of SPIE. San Francisco, California, USA. 2014. V. 9144. Art. ID 91444T. https://doi.org/10.1117/12.2055941
  21. Astrom K., Hagglund T. PID Controllers: Theory, Design and Tuning. North Carolina: Research Triangle Park, Instrument Society of America, 1995.
  22. Сидорова А.А. Определение наиболее эффективного метода настройки ПИД-регулятора // Проблемы информатики. 2012. № S3(17). С. 143–150.
  23. Гамков Д.М., Бунтов М.В. Настройка пропорционально-интегрально-дифференциальных регуляторов системы обеспечения тепловым режимом астрофизического телескопа ART-XC обсерватории “Спектр-РГ” // Сб. тр. XIV Конференции молодых ученых “Фундаментальные и прикладные космические исследования”. 2017. С. 5–24.
  24. Semena N., Pavlinsky M., Buntov M. et al. ART-XC/SRG: results of qualification thermo-vacuum tests // Proc. SPIE. 2016. V. 9905. Art. ID 990550. https://doi.org/10.1117/12.2231276

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences