Orbiting dumbbell with a variable mass distribution: dynamics and control

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The plane orbital motion of a dumbbell-shaped body of variable length in the central field of attraction is considered. It is assumed that the mass of the dumbbell is concentrated at its end points. The attitude motion is considered Within the so-called satellite approximation, when the center of mass of the dumbbell moves in an unperturbed elliptical Keplerian orbit. The laws of changing the length of the dumbbell have been found, which make it possible to implement certain prescribed classes of its motion around the center of mass. In the general case, the chaotic nature of motion is detected numerically using the Poincare map for the period.

About the authors

A. A. Burov

Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences

Email: jtm@narod.ru
Moscow, Russia

I. I. Kosenko

Moscow Aviation Institute (national Research University)

Email: jtm@narod.ru
Moscow, Russia

V. I. Nikonov

Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences

Author for correspondence.
Email: jtm@narod.ru
Moscow, Russia

References

  1. Roberson R.E. Torques on a satellite vehicle from internal moving parts // J. Applied Mechanics. 1958. V. 25. Iss. 2. P. 196–200.
  2. Roberson R.E. Torques on a satellite vehicle from internal moving parts (Supplement) // J. Applied Mechanics. 1958. V. 25. Iss. 2. P. 287–288.
  3. Roberson R.E. Comments on the incorporation of man into the attitude dynamics of spacecraft // J. Astronautical Sciences. 1963. V. 10. Iss. 1. P. 27–28.
  4. Thomson W.T., Fung Y.C. Instability of spinning space stations due to crew motion // AIAA Journal. 1965. V. 3. Iss. 6. P. 1082–1087.
  5. Harding C.F. Manned vehicles as solids with translating particles: I // J. Spacecraft and Rockets. 1965. V. 2. Iss. 3. P. 465–467.
  6. Poli C.R. Effect of man’s motion on the attitude of a satellite // J. Spacecraft and Rockets. 1967. V. 4. Iss. 1. P. 15–20.
  7. Bainum P.M. The dynamics of spin stabilized spacecraft with movable appendages. Part 2. Final Report NASA-CR-148815. Washington, D.C.: Howard University, School of Engineering, Department of Mechanical Engineering, 1976.
  8. Rochon B.V., Scheer S.A. Crew activity & motion effects on the space station. Report NAS 9-15800. Marshall Space Flight Center, Huntsville, Alabama, 1986.
  9. Amir R.A., Newman D.J. Research into the effects of astronaut motion on the spacecraft: a review // Acta Astronautica. 2000. V. 47. Iss. 12. P. 859–869.
  10. Bainum P.M., Sellappan R. The use of a movable telescoping end mass system for the time-optimal control of spinning spacecraft // Acta Astronautica. 1978. V. 5. Iss. 10. P. 781–795.
  11. Полянская И.П. Колебания спутника с компенсирующими устройствами на эллиптической орбите // Космические исследования. 1982. Т. 20. Вып. 5. С. 674–681.
  12. Edwards T.L. A movable mass control system to detumble a disabled space vehicle. Astronautics Research Report No. 73‑5. The Pennsylvania State University, Department of Aerospace Engineering, 1973.
  13. Kunciw B.G., Kaplan M.H. Optimal space station detumbling by internal mass motion // Automatica. 1976. V. 12. Iss. 5. P. 417–425.
  14. Schiehlen W. Über die Lagestabilisierung künstlicher Satelliten auf elliptischen Bahnen. Diss. Dokt.-Ing., Technische Hochschule Stuttgart, Stuttgart, 1966. 148 S.
  15. Schiehlen W. Über den Drallsatz für Satelliten mit im Innern bewegten Massen // Z. angew. Math. Mech. 1966. Bd. 46. Sonderheft. S. T132–T134.
  16. Schiehlen W., Kolbe O. Gravitationsstabilisierung von Satelliten auf elliptischen Bahnen // Archive of Applied Mechanics (Ingenieur-Archiv). 1969. V. 38. P. 389–399.
  17. Haeussermann W. An attitude control system for space vehicles // ARS Journal. 1959. V. 29. Iss. 3. P. 203–207.
  18. Merrick V.K. Some control problems associated with Earth-oriented satellites. NASA Technical Note D‑1771. 1963.
  19. Асланов В.С., Безгласный С.П. Гравитационная стабилизация спутника с помощью подвижной массы // Прикладная математика и механика. 2012. Т. 76. Вып. 4. С. 563–573. (= Aslanov V.S., Bezglasnyi S.P. Gravitational stabilization of a satellite using a movable mass // J. Applied Mathematics and Mechanics. 2012. V. 76. Iss. 4. P. 405–412.)
  20. Ahn Y.T. Attitude dynamics and control of a spacecraft using shifting mass distribution. Dissertation in Aerospace Engineering. The Pennsylvania State University, College of Engineering, 2012.
  21. Маркеев А.П. О динамике спутника, несущего подвижную относительно него точечную массу // Изв. РАН. МТТ. 2015. № 6. С. 3–16. (= Markeev A.P. Dynamics of a satellite carrying a point mass moving about it // Mechanics of Solids. 2015. V. 50. P. 603–614.)
  22. Hwang J. Attitude stabilization of spacecraft using moving masses. Master thesis in Aerospace Engineering. The University of Texas at Arlington, 2016.
  23. Virgili‑Llop J., Polat H.C., Romano M. Using shifting masses to reject aerodynamic perturbations and to maintain a stable attitude in very low Earth orbit // Advances in the Astronautical Sciences. 2016. V. 158. P. 2129–2148.
  24. Chesi S., Gong Q., Romano M. Aerodynamic three-axis attitude stabilization of a spacecraft by center-of-mass shifting // J. Guidance, Control, and Dynamics. 2017. V. 40. Iss. 7. P. 1613–1626.
  25. Virgili‑Llop J., Polat H.C., Romano M. Attitude stabilization of spacecraft in very low Earth orbit by center-of-mass shifting // Frontiers in Robotics and AI. 2019. V. 6. Art. ID 7.
  26. Белецкий В.В. Очерки о движении космических тел. М.: Наука, 1977. 430 с. (= Beletsky V.V. Essays on the motion of celestial bodies. Basel: Birkhäuser Basel, 2001.)
  27. Kholostova O.V. Nonlinear stability analysis of relative equilibria of a solid carrying a movable point mass in the central gravitational field // Rus. J. Nonlin. Dyn. 2019. V. 15. Iss. 4. P. 505–512.
  28. Xue Zhong, Zhao Jie, Yu Kaiping et al. Relative equilibrium and stability of a three-body tethered satellite in an elliptical orbit // Research Square. 2022.
  29. Burov A.A., Kosenko I.I., Nikonov V.I. Spacecraft with periodic mass redistribution: regular and chaotic behaviour // Rus. J. Nonlin. Dyn. 2022. V. 18. Iss. 4. P. 639–649.
  30. Burov A.A., Nikonov V.I. On the nonlinear Meissner equation // International J. Non-Linear Mechanics. 2019. V. 110. P. 26–32.
  31. Burov A.A., Nikonov V.I. On the motion of the pendulum in an alternating, sawtooth force field // International J. Bifurcation and Chaos in Applied Sciences and Engineering. 2020. V. 30. Iss. 9. Art. ID 2050135.
  32. Буров А.А. О колебаниях вибрирующей гантели на эллиптической орбите // Доклады Академии наук. 2011. Т. 437. № 2. С. 186–189. (= Burov A.A. Oscillations of a vibrating dumbbell on an elliptic orbit // Doklady Physics. 2011. V. 56. Iss. 3. P. 182–185.)
  33. Белецкий В.В. О либрации спутника // Искусственные спутники Земли. 1959. Вып. 3. С. 13–31.
  34. Белецкий В.В. Движение искусственного спутника относительно центра масс. М.: Наука, 1965. (= Beletskii V.V. Motion of an artificial satellite about its center of mass. Jerusalem: Israel Program for Scientific Translations, 1966. 261 p.)
  35. Демидович Б.П. Сборник задач и упражнений по математическому анализу. М.: Изд-во МГУ, 1997. 624 с. (= Demidovich B.P. Collection of problems and exercises in mathematical analysis. Moscow: Moscow State University, 1997. 624 p.)
  36. Буров А.А., Косенко И.И. О существовании и устойчивости орбитально равномерных вращений вибрирующей гантели на эллиптической орбите // Доклады Академии наук. 2013. Т. 451. № 2. С. 164–167. (= Burov A.A., Kosenko I.I. The existence and stability of “orbitally uniform” rotations of a vibrating dumbbell on an elliptic orbit // Doklady Physics. 2013. V. 58. Iss. 7. P. 305–308.)
  37. dos Santos D.P.S. Stability solutions of a dumbbell-like system in an elliptical orbit // J. Physics Conference Series. 2015. V. 641. Art. ID 12004.
  38. dos Santos D.P.S., Formiga J.K.S. Analysis of stability for uniform rotations of a dumbbell system in an elliptic orbit // International J. Advanced Engineering Research and Science (IJAERS). 2021. V. 8. Iss. 2. P. 97–105.
  39. Козлов В.В. Интегрируемость и неинтегрируемость в гамильтоновой механике // Успехи математических наук. 1983. Т. 38. Вып. 1(229). С. 3–67. (= Kozlov V.V. Integrability and non-integrability in Hamiltonian mechanics // Russian Mathematical Surveys. 1983. V. 38. Iss. 1. P. 1–76.)
  40. Beletsky V.V. Reguläre und chaotische Bewegung starrer Körper. B.G. Teubner Verlag, 1995.
  41. Буров А.А., Косенко И.И. О плоских колебаниях гантели переменной длины в центральном поле ньютоновского притяжения. Точная постановка // Сб. Современные проблемы математики и механики. Сер. Математика, механика. 2013. Вып. 2. М.: Изд-во Попечительского совета мех.-мат. факультета МГУ. Т. 7. С. 11–21.
  42. Burov A.A., Kosenko I.I. Planar oscillations of a dumbbell of a variable length in a central field of Newtonian attraction. Exact approach // International J. Non-Linear Mechanics. 2015. V. 72. P. 1–5.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences