Mineral composition of the productive formation and features of chromites of the Lukoyanovsky placer area (Nizhny Novgorod region)

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

As a result of geological exploration within the Lukoyanovsky placer district (Nizhny Novgorod region), increased contents of chrome spinel reaching an industrial level of up to 100 kg/m3 were established in complex coastal-marine rare metal-titanium placers, while their source is not obvious. In addition to chrome spinel, industrial components of placers are ilmenite, zircon and rutile. Morphological features of ore minerals make it possible to assume several sources of ore material transportation, both proximal and distant. Moderately mature mineral composition of the heavy fraction (increased amount of minerals unstable during weathering) indicates that the formation of Permian-Jurassic deposits of this region occurred without the participation (or with weak participation) of chemical weathering crusts. During the mobilization of detrital material in the source zone and during the formation of intermediate reservoirs (Permian and Early Mesozoic complexes of the sedimentary cover of the Ural part of the East European platform), mechanical processes prevailed with a subordinate influence of crust formation. The study of the chemical composition of chrome spinel of the most studied and promising Itmanovskaya placer showed that they are mostly similar to the same-name minerals of the ophiolite formation, as well as concentrically zoned platinum-bearing massifs. It seems that with the general influence on the formation of the sedimentary cover of the central and eastern parts of the East European platform at the Permian-Triassic boundary of the Uralide paleoorogen, the Puchezh-Katunka ring structure, located to the north of the Lukoyanov dome, had a noticeable effect on the composition of the heavy fraction of sediments in the region.

全文:

受限制的访问

作者简介

A. Lalomov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM) RAS

编辑信件的主要联系方式.
Email: lalomov@mail.ru
俄罗斯联邦, Staromonetny lane, 35, Moscow, 119017

A. Grigorieva

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM) RAS

Email: lalomov@mail.ru
俄罗斯联邦, Staromonetny lane, 35, Moscow, 119017

Yu. Ivanova

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM) RAS

Email: lalomov@mail.ru
俄罗斯联邦, Staromonetny lane, 35, Moscow, 119017

L. Ivanova

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM) RAS

Email: lalomov@mail.ru
俄罗斯联邦, Staromonetny lane, 35, Moscow, 119017

I. Gornostaev

Lomonosov Moscow State University

Email: lalomov@mail.ru
俄罗斯联邦, Leninskie Gory, Moscow, 119991

E. Ivanova

Lomonosov Moscow State University

Email: lalomov@mail.ru
俄罗斯联邦, Leninskie Gory, Moscow, 119991

参考

  1. Бенедюк Ю.П., Колотилина Т.Б., Мехоношин А.С. Хромшпинелиды Медекского массива (Восточный Саян) // Известия Сибирского отделения секции наук о земле РАЕН. Геология поиски и разведка рудных месторождений. 2010. № 2(37). С. 72–76.
  2. Громалова Н.А. Циркон метаморфических пород. Особенности кристалломорфологии, химизма и внутреннего строения // Жизнь Земли. 2023. Т. 45. № 2. С. 184–192.
  3. Гурвич С.И., Болотов А.М. Титано-циркониевые россыпи Русской платформы и вопросы поисков. М.: Недра, 1968. 185 с.
  4. Кирков И.Г., Кочергина В.А., Хайдарова Д.А. и др. Государственная геологическая карта Российской Федерации масштаба 1 : 200000. Издание второе. Серия Средневолжская. Лист O-38-XXVI (Пучеж). Объяснительная записка [Электронный ресурс]. М.: Московский филиал ФГБУ “ВСЕГЕИ”, 2021. 112 с.
  5. Колодяжный С.Ю., Кузнецов Н.Б., Романюк Т.В. и др. Природа Пучеж-Катункской импактной структуры (центральная часть Восточно-Европейской платформы): результаты изучения U–Th–Pb изотопной системы зерен детритового циркона из эксплозивных брекчий // Геотектоника. 2023. № 5. С. 70–95.
  6. Кухаренко А.А. Минералогия россыпей. М.: Недра, 1961. 318 с.
  7. Лаломов А.В., Рахимов И.Р., Григорьева А.В. Хромитовые россыпные проявления Волго-Уральского бассейна – вопросы генезиса, источников и промышленного потенциала // Георесурсы. 2021. № 3. С. 70–75.
  8. Лаломов А.В. Локальные факторы формирования прибрежно-морских редкометалльно-титановых россыпей // Литология и полез. ископаемые. 2023. № 4. С. 407–420.
  9. Лаломов А.В., Берто Г., Изотов В.Г. и др. Реконструкция палеогидродинамических параметров верхнепермского осадочного бассейна Прикамья // Георесурсы. 2017. № 2. C. 103–110.
  10. Лаломов А.В., Григорьева А.В., Иванова Ю.Н. Особенности хромитосодержащих россыпей Лукояновского россыпного района (Нижегородская область) и условия их формирования // Литология и полез. ископаемые. 2024. № 6. С. 710–720.
  11. Маракушев А.А., Богатырев О.С., Феногенов А.Н. и др. Формирование Пучеж-Катункской кольцевой структуры на Русской платформе // ДАН. 1993. Т. 328. № 3. С. 361–365.
  12. Павлов Н.В., Григорьева И.И., Гришина Н.В. Образование и генетические типы хромитовых месторождений геосинклинальных областей // Условия образования магматических рудных месторождений / Отв. ред. А.И. Смирнов. М.: Наука, 1979 М.: Наука, 1979. С. 5–78.
  13. Патык-Кара Н.Г. Россыпи в системе седиментогенеза // Литология и полез. ископаемые. 2002. № 5. С. 494–508.
  14. Патык-Кара Н.Г. Минерагения россыпей: типы россыпных провинций М.: ИГЕМ РАН, 2008. 526 с.
  15. Пучков В.Н. Геология Урала и Приуралья (актуальные вопросы стратиграфии, тектоники, геодинамики и металлогении). Уфа: ДизайнПолиграфСервис, 2010. 280 с.
  16. Рахимов И.Р., Савельев Д.Е., Холоднов В.В. и др. Уникальная Сабантуйская хромитовая палеороссыпь в осадочном чехле Восточно-Европейской платформы // Геология рудных месторождений. 2020. № 6. С. 568–573.
  17. Рухин Л.Б. Основы литологии: Учение об осадочных породах. Л.: Недра, 1969. 703 с.
  18. Рыженко Б.Н., Черкасова Е.В. Прогноз загрязнения вод при разработке месторождения хромита // Геохимия. 2013. № 9. С. 809–818. https://doi.org/10.7868/S0016752513060071
  19. Сигов А.П. Условия образования полезных ископаемых и металлогенические эпохи мезозоя и кайнозоя Урала // Материалы по геоморфологии Урала. М.: Недра, 1971. С. 117–126.
  20. Цымбал С.Н., Полканов Ю.А. Минералогия титано-циркониевых россыпей Украины. Киев: Наукова Думка, 1975. 248 с.
  21. Barnes S., Roeder P. The Range of spinel compositions in terrestrial mafic and ultramafic rocks // Journal of Petrology. 2001. V. 42. P. 2279–2302.
  22. Gujar A.R., Ambre N.V., Iyer S.D., Mislankar P.G., Loveson V.J. Placer chromite along south Maharashtra, central west coast of India // Current Science. 2010. V. 99(4). P. 492–499.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Distribution scheme of the Bathonian stage deposits of the Middle Jurassic promising for rare metal-titanium placers based on the materials of [Gurvich, Bolotov, 1968; Lalomov et al., 2024]. 1 - mountainous and flat land, erosion area; 2 - flat land, sedimentation area; 3 - coastal plain, occasionally flooded by the sea; 4 - shallow sea, terrigenous sediments; 5 - areas of development of promising productive deposits; 6 - main directions of removal of clastic material; 7 - Lukoyanovsky placer region; 8 - Puchezh-Katunka structure.

下载 (321KB)
3. Fig. 2. Ilmenite from a selected mineralogical and technological sample of the Itmanovskaya placer (BSE images). a – unrounded acute-angled fragments; b – grains of irregular shape, weakly rounded, with an uneven pitted surface; c – rounded flattened grains with a high degree of roundness.

下载 (261KB)
4. Fig. 3. Rutile from a selected mineralogical and technological sample of the Itmanovskaya placer (BSE images). a – crystals and their fragments with slightly rounded edges; b – acute-angled unrounded fragments; c – semi-rounded grains with an uneven surface, probably associated with the development of rutile after ilmenite in titanomagnetite.

下载 (323KB)
5. Fig. 4. Zircon from a selected mineralogical and technological sample of the Itmanovskaya placer (BSE images). a – well-preserved crystals with regular crystallographic faces; b – semi-rounded crystals with smoothed edges, but partially preserved faces; c – rounded grains with an uneven surface caused by the growth of newly formed crystals of a “melted” appearance.

下载 (269KB)
6. Fig. 5. Leucoxene of the selected mineralogical and technological sample of the Itmanovskaya placer (BSE images). a – well-rounded grains of deeply altered ilmenite; b, c – grains with ilmenite relics.

下载 (251KB)
7. Fig. 6. Hematite from a selected mineralogical and technological sample of the Itmanovskaya placer (BSE images). a – massive hematite grains of good roundness; b – poorly rounded massive grains; c – cavernous grains with hydroxide admixtures.

下载 (271KB)
8. Fig. 7. Titanomagnetite of the selected mineralogical and technological sample of the Itmanovskaya placer (BSE images). a – medium-rounded grains of irregular shape; b – grains preserving crystallographic shapes; c – grains with traces of iron removal.

下载 (327KB)
9. Fig. 8. Morphological types of chrome-spinel grains from the Itmanovskaya placer (on the left are BSE images of grains on film, on the right are sections in polished checkers). a, b – grains that have partially preserved the octahedron outline (type 1); c, d – grain fragments of varying degrees of roundness (type 2); d, f – unrounded fragmental grain fragments (type 3); g, h – partially rounded grains with traces of surface dissolution (type 4).

下载 (340KB)
10. Fig. 9. Comparison of the average chemical composition of various morphological types of chrome spinels of the Itmanovskaya placer according to the data of the study of the mineralogical and technological sample of the Itmanovskaya placer.

下载 (90KB)
11. Fig. 10. Classification diagrams of Cr–Al–Fe3+ (a) and Mg#–Cr# (b) for chrome spinels of the Itmanovskaya placer. 1–4 – morphological types of chrome spinel grains: 1 – type 1 (idiomorphic), 2 – type 2 (rounded), 3 – type 3 (detrital non-rounded), 4 – type 4 (corroded); 5–7 – composition fields of chrome spinels (50% contour) from ophiolites (5), layered intrusions (6), concentrically zoned platinum-bearing massifs (Alaskan zoned ultramafic complexes) (7). Composition fields of chrome spinels from ultramafites of different formational affiliation are given according to [Barnes, Roeder, 2001; [Rakhimov et al., 2020].

下载 (166KB)
12. Fig. 11. Position of chrome spinels of the Itmanovskaya placer on the Cr–Al–(Fe3++2Ti) (a) diagrams and Mg#–Cr# (b) coefficients of the ultramafic massifs of the Eastern Sayan, obtained according to the data of [Benedyuk et al., 2010]. 1–4 – morphological types of chrome spinel grains: 1 – type 1 (idiomorphic), 2 – type 2 (rounded), 3 – type 3 (detrital non-rounded), 4 – type 4 (corroded); 5, 6 – composition fields of chrome spinels from rocks of the dunite-wehrlite-plagiowehrlite formation (5) and dunite-harzburgite formation (6).

下载 (127KB)

版权所有 © Russian academy of sciences, 2025