Дифференциация грибов Fusarium temperatum и F. subglutinans из комплекса видов F. fujikuroi
- Авторы: Гагкаева Т.Ю.1, Гаврилова О.П.1, Орина А.С.1
-
Учреждения:
- Всероссийский научно-исследовательский институт защиты растений
- Выпуск: Том 58, № 1 (2024)
- Страницы: 54-68
- Раздел: ГРИБЫ – ВОЗБУДИТЕЛИ БОЛЕЗНЕЙ РАСТЕНИЙ
- URL: https://journals.eco-vector.com/0026-3648/article/view/655975
- DOI: https://doi.org/10.31857/S0026364824010067
- EDN: https://elibrary.ru/makhka
- ID: 655975
Цитировать
Аннотация
Выявленный полиморфизм трех локусов (TEF, tub и RPB2) и проведенный филогенетический анализ привели к идентификации двух штаммов, выделенных из стебля пшеницы и корня рапса как Fusarium temperatum. Это первое обнаружение данного вида, относящегося к комплексу видов F. fujikuroi, на территории России и первое обнаружение в микобиоте пшеницы и рапса. Выполнен сравнительный анализ диагностической ценности морфологических признаков штаммов близкородственных близкородственных видов F. temperatum и F. subglutinans s.str. Отчетливых различий между F. temperatum и F. subglutinans по культуральным характеристикам и микроструктурам не выявлено, что указывает на невозможность точной идентификации этих видов по морфологическим признакам. Штаммы F. subglutinans имели одну МАТl-1 идиоморфу локуса типа спаривания, тогда как штаммы F. temperatum обладали альтернативными идиоморфами МАТl-1 и МАТl-2. Скрещивание в лабораторных условиях штаммов противоположных типов спаривания привело к образованию фертильных перитециев гриба F. temperatum. Показано, что при росте на автоклавированном рисе штаммы F. temperatum и F. subglutinans не продуцировали фумонизины. В отличие от штаммов F. subglutinans, штаммы F. temperatum образовывали высокие количества боверицина – 1665 и 6106 мкг/кг, а один из них дополнительно продуцировал 3407 мкг/кг монилиформина. Видовая идентификация F. temperatum и F. subglutinans возможна только при привлечении молекулярно-генетических и хемотаксономических методов.
Ключевые слова
Полный текст

Об авторах
Т. Ю. Гагкаева
Всероссийский научно-исследовательский институт защиты растений
Автор, ответственный за переписку.
Email: t.gagkaeva@mail.ru
Россия, 196608, Санкт-Петербург
О. П. Гаврилова
Всероссийский научно-исследовательский институт защиты растений
Email: olgavrilova1@yandex.ru
Россия, 196608, Санкт-Петербург
А. С. Орина
Всероссийский научно-исследовательский институт защиты растений
Email: orina-alex@yandex.ru
Россия, 196608, Санкт-Петербург
Список литературы
- Al-Hatmi A., Sandoval-Denis M., Nabet C. et al. Fusarium volatile, a new potential pathogen from a human respiratory sample. Fungal Syst. Evol. 2019. V. 4. P. 171–181. https://doi.org/10.3114/fuse.2019.04.09
- Bömke C., Tudzynski B. Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry. 2009. V. 70. P. 1876–1893. https://doi.org/10.1016/j.phytochem.2009.05.020
- Boutigny A.L., Scauflaire J., Ballois N. et al. Fusarium temperatum isolated from maize in France. Eur. J. Plant Pathol. 2017. V. 148. P. 997–1001. https://doi.org/10.1007/s10658–016–1137-x
- Brankovics B., van Dam P., Rep M. et al. Mitochondrial genomes reveal recombination in the presumed asexual Fusarium oxysporum species complex. BMC Genomics. 2017. V. 18. P. 735. https://doi.org/10.1186/s12864–017–4116–5
- Britz H., Steenkamp E.T., Coutinho T.A. et al. Two new species of Fusarium section Liseola associated with mango malformation. Mycologia. 2002. V. 94. P. 722–730. https://doi.org/10.2307/3761722
- Campos-Macías P., Arenas-Guzmán R., Hernández-Hernández F. Fusarium subglutinans: A new eumycetoma agent. Med. Mycol. Case. 2013. V. 2. P. 128–131. https://doi.org/10.1016/j.mmcr.2013.06.004
- Cosic J., Jurkovic D., Vrandecic K. et al. Pathogenicity of Fusarium species to wheat and barley ears. Cereal Res. Commun. 2007. V. 35. P. 529–532. https://doi.org/10.1556/crc.35.2007.2.91
- Costa M.M., Melo M.P., Carmo F.S. et al. Fusarium species from tropical grasses in Brazil and description of two new taxa. Mycol. Progress. 2021. V. 20. P. 61–72. https://doi.org/10.1007/s11557–020–01658–5
- Crous P.W., Lombard L., Sandoval-Denis M. et al. Fusarium: more than a node or a foot-shaped basal cell. Stud. Mycol. 2021. V. 98. P. e100116. https://doi.org/10.1016/j.simyco.2021.100116
- Czembor E., Stępień Ł., Waśkiewicz A. Effect of environmental factors on Fusarium species and associated mycotoxins in maize grain grown in Poland. PLOS One. 2015. V. 10. P. e0133644. https://doi.org/10.1371/journal.pone.0133644
- Demirözer O. Target-oriented dissemination of the entomopathogenic fungus Fusarium subglutinans 12A by the Western Flower Thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Phytoparasitica. 2019. V. 47. P. 393–403. https://doi.org/10.1007/s12600–019–00728-z
- Dewing C., Van der Nest M.A., Santana Q.C. et al. Characterization of host-specific genes from pine- and grass-associated species of the Fusarium fujikuroi species complex. Pathogens. 2022. V. 11. P. 858. https://doi.org/10.3390/pathogens11080858
- Fallahi M., Saremi H., Javan-Nikkhah M. et al. Isolation, molecular identification and mycotoxin profile of Fusarium species isolated from maize kernels in Iran. Toxins. 2019. V. 11. P. 297. https://doi.org/10.3390/toxins11050297
- Fumero M.V., Reynoso M.M., Chulze S. Fusarium temperatum and Fusarium subglutinans isolated from maize in Argentina. Int. J. Food Microbiol. 2015. V. 199. P. 86–92. https://doi.org/10.1016/j.ijfoodmicro.2015.01.011
- Fumero M.V., Villani A., Susca A. et al. Fumonisin and beauvericin chemotypes and genotypes of the sister species Fusarium subglutinans and Fusarium temperatum. Appl. Environ. Microbiol. 2020. V. 86. P. e00133–20. https://doi.org/10.1128/AEM.00133–20
- Geiser D.M., Ivey M.L., Hakiza G. et al. Gibberella xylarioides (anamorph: Fusarium xylarioides), a causative agent of coffee wilt disease in Africa, is a previously unrecognized member of the G. fujikuroi species complex. Mycologia. 2005. V. 97. P. 191–201. https://doi.org/10.3852/mycologia.97.1.191
- Glenn A.E., Richardson E.A., Bacon C.W. Genetic and morphological characterization of a Fusarium verticillioides conidiation mutant. Mycologia. 2004. V. 96. P. 968–980. https://doi.org/10.2307/3762081
- Jewell L.E., Hsiang T. Multigene differences between Microdochium nivale and Microdochium majus. Botany. 2013. V. 91. P. 99–106. https://doi.org/10.1139/cjb-2012–0178
- Kumar S., Stecher G., Li M. et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molec. Biol. Evol. 2018. V. 35. P. 1547–1549. https://doi.org/10.1093/molbev/msy096
- Lanza F.E., Mayfield D.A., Munkvold G.P. First report of Fusarium temperatum causing maize seedling blight and seed rot in North America. Plant Disease. 2016. V. 100. P. 1019. https://doi.org/10.1094/PDIS-11-15-1301-PDN
- Leslie J.F., Summerell B.A. The Fusarium laboratory manual. Blackwell Professional, Ames, 2006.
- Levic J., Munaut F., Scauflaire J. et al. Polyphasic approach used for distinguishing Fusarium temperatum from Fusarium subglutinans. J. Agric. Sci. Technol. 2019. V. 21. P. 221–232. http://r.istocar.bg.ac.rs/handle/123456789/614
- Lima C.S., Pfenning L.H., Costa S.S. et al. Fusarium tupiense sp. nov., a member of the Gibberella fujikuroi complex that causes mango malformation in Brazil. Mycologia. 2012. V. 104. P. 1408–1419. https://doi.org/10.3852/12-052
- Liu Y.J., Wehlen S., Hall B.D. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molec. Biol. Evol. 1999. V. 16. P. 1799–1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
- Lord E., Leclercq M., Boc A. et al. Armadillo 1.1: An original workflow platform for designing and conducting phylogenetic analysis and simulations. PLOS One. 2012. V. 7. P. e29903. https://doi.org/10.1371/journal.pone.002990
- Malachová A., Sulyok M., Beltrán E. et al. Optimization and validation of a quantitative liquid chromatography-tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices. J. Chromatogr. A. 2014. V. 1362. P. 145–156. https://doi.org/10.1016/j.chroma.2014.08.037
- Moretti A., Mulé G., Ritieni A. et al. Cryptic subspecies and beauvericin production by Fusarium subglutinans from Europe. Int. J. Food Microbiol. 2008. V. 127. P. 312–315. https://doi.org/10.1016/j.ijfoodmicro.2008.08.003
- Nelson P.E., Toussoun T.A., Marasas W.F.O. Fusarium species: an illustrated manual for identification. The Pennsylvania State University Press. 1983.
- Niehaus E.-M., Münsterkötter M., Proctor R.H. et al. Comparative “omics” of the Fusarium fujikuroi species complex highlights differences in genetic potential and metabolite synthesis. Genome Biol. Evol. 2016. V. 8. P. 3574–3599. https://doi.org/10.1093/gbe/evw259
- Nirenberg H.I., O’Donnell K. New Fusarium species and combinations within the Gibberella fujikuroi species complex. Mycologia. 1998. V. 90. P. 434–458. https://doi.org/10.2307/3761403.
- O’Donnell K., Cigelnik E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylogenet. Evol. 1997. P. 103–116. https://doi.org/10.1006/mpev.1996.0376
- O’Donnell K., Cigelnik E., Nirenberg H.I. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia. 1998. V. 90. P. 465–493. https://doi.org/10.1080/00275514.1998.12026933
- O’Donnell K., Nirenberg H.I., Aoki T. et al. A multigene phylogeny of the Gibberella fujikuroi species complex: detection of additionally phylogenetically distinct species. Mycoscience. 2000. V. 41. P. 61–78. https://doi.org/10.1007/BF02464387
- O‘Donnell K., Sarver B.A., Brandt M. et al. Phylogenetic diversity and microsphere array-based genotyping of human pathogenic Fusaria, including isolates from the multistate contact lens-associated U.S. keratitis outbreaks of 2005 and 2006. J. Clin. Microbiol. 2007. V. 45. P. 2235–2248. https://doi.org/10.1128/JCM.00533–07
- O’Donnell K., Rooney A.P., Proctor R.H. et al. Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal Gen. Biol. 2013. V. 52. P. 20–31. https://doi.org/10.1016/j.fgb.2012.12.004
- Okello P.N., Mathew F.M. Cross pathogenicity studies show South Dakota isolates of Fusarium acuminatum, F. equiseti, F. graminearum, F. oxysporum, F. proliferatum, F. solani, and F. subglutinans from either soybean or corn are pathogenic to both crops. Plant Health Prog. 2019. V. 20. P. 44–49. https://doi.org/10.1094/PHP-10–18–0056-RS
- Pérez-Vázquez M.A.K., Morales-Mora L.A., Romero-Arenas O. et al. First report of Fusarium temperatum causing fruit blotch of Capsicum pubescens in Puebla, México. Plant Dis. 2022. V. 106. 1758. https://doi.org/10.1094/PDIS-09–21–1941-PDN
- Pfordt A., Schiwek S., Rathgeb A. et al. Occurrence, pathogenicity, and mycotoxin production of Fusarium temperatum in relation to other Fusarium species on maize in Germany. Pathogens. 2020. V. 9. P. 864. https://doi.org/10.3390/pathogens9110864
- Proctor R.H., Van Hove F., Susca A. et al. Birth, death and horizontal transfer of the fumonisin biosynthetic gene cluster during the evolutionary diversification of Fusarium. Mol. Microbiol. 2013. V. 90. P. 290–306. https://doi.org/10.1111/mmi.12362.
- Qiu J., Lu Y., He D. et al. Fusarium fujikuroi species complex associated with rice, maize, and soybean from Jiangsu Province, China: phylogenetic, pathogenic, and toxigenic analysis. Plant Dis. 2020. V. 104. P. 2193–2201. https://doi.org/10.1094/PDIS-09-19-1909-RE
- Robles-Barrios F., Ramírez-Granillo A., Medina-Canales M.G. et al. Fusarium temperatum shows a hemibiotrophic infection process and differential pathogenicity over different maize breeds from Mexico. J. Phytopathol. 2022. V. 170. P. 21–33. https://doi.org/10.1111/jph.13052
- Scauflaire J., Gourgue M., Callebaut A. et al. Fusarium temperatum, a mycotoxin-producing pathogen of maize. Eur. J. Plant Pathol. 2012. V. 133. P. 911–922. https://doi.org/10.1007/s10658-012-9958-8
- Scauflaire J., Gourgue M., Munaut F. Fusarium temperatum sp. nov. from maize, an emergent species closely related to Fusarium subglutinans. Mycologia. 2011. V. 103. P. 586–597. https://doi.org/10.3852/10–135
- Shin J.H., Han J.H., Lee J.K. et al. Characterization of the maize stalk rot pathogens Fusarium subglutinans and F. temperatum and the effect of fungicides on their mycelial growth and colony formation. Plant Pathol. J. 2014. V. 30. P. 397–406. https://doi.org/10.5423/PPJ.OA.08.2014.0078
- Steenkamp E.T., Wingfield B.D., Coutinho T.A. et al. PCR-based identification of MAT-1 and MAT-2 in the Gibberella fujikuroi species complex. Appl. Environ. Microbiol. 2000. V. 66. P. 4378–4382. https://doi.org/10.1128/AEM.66.10.4378–4382.2000
- Steenkamp E.T., Wingfield B.D., Desjardins A.E. et al. Cryptic speciation in Fusarium subglutinans. Mycologia. 2002. V. 94. P. 1032–1035. https://doi.org/10.2307/3761868
- Stępień Ł., Gromadzka K., Chełkowski J. et al. Diversity and mycotoxin production by Fusarium temperatum and Fusarium subglutinans as causal agents of pre-harvest Fusarium maize ear rot in Poland. J. Appl. Genet. 2019. V. 60. P. 113–121. https://doi.org/10.1007/s13353-018-0478-x
- Tsavkelova E., Oeser B., Oren-Young L. et al. Identification and functional characterization of indole-3-acetamide-mediated IAA biosynthesis in plant-associated Fusarium species. Fungal Genet. Biol. 2012. V. 49. P. 48–57. https://doi.org/10.1016/j.fgb.2011.10.005
- Tudzynski B., Hölter K. Gibberellin biosynthetic pathway in Gibberella fujikuroi: evidence for a gene cluster. Fungal Genet. Biol. 1998. V. 25. P. 157–170. https://doi.org/10.1006/fgbi.1998.1095
- Van Hove F., Waalwijk C., Logrieco A. et al. Gibberella musae (Fusarium musae) sp. nov., a recently discovered species from banana is sister to F. verticillioides. Mycologia. 2011. V. 103. P. 570–585. https://doi.org/10.3852/10–038
- Vermeulen M., Rothmann L.A., Swart W.J. et al. Fusarium casha sp. nov. and F. curculicola sp. nov. in the Fusarium fujikuroi species complex isolated from Amaranthus cruentus and threeweevil species in South Africa. Diversity. 2021. V. 13. 472. https://doi.org/10.3390/d13100472
- Vrabka J., Niehaus E.-M., Münsterkötter M. et al. Production and role of hormones during interaction of Fusarium species with maize (Zea mays L.) seedlings. Front. Plant Sci. 2019. V. 9. 1936. https://doi.org/10.3389/fpls.2018.01936.
- Wang J.-H., Zhang J.-B., Li H.-P. et al. Molecular identification, mycotoxin production and comparative pathogenicity of Fusarium temperatum isolated from maize in China. J. Phytopathol. 2014. V. 162. P. 147–157. https://doi.org/10.1111/jph.12164
- Wang M.M., Crous P.W., Sandoval-Denis M. et al. Fusarium and allied genera from China: species diversity and distribution. Persoonia. 2022. V. 48. P. 1–53. https://doi.org/10.3767/persoonia.2022.48.01
- Wit M., Ochodzki P., Warzecha R. et al. Influence of endosperm starch composition on maize response to Fusarium temperatum Scaufl. et Munaut. Toxins. 2022. V. 14. P. 200. https://doi.org/10.3390/toxins14030200
- Xi K., Shan L., Yang Y. et al. Species diversity and chemotypes of Fusarium species associated with maize stalk rot in Yunnan province of Southwest China. Front. Microbiol. 2021. V. 12. P. 652062. https://doi.org/10.3389/fmicb.2021.652062
- Yang X., Xu X., Wang S. et al. Identification, pathogenicity, and genetic diversity of Fusarium spp. associated with maize sheath rot in Heilongjiang Province, China. Int. J. Mol. Sci. 2022. V. 23. 10821. https:// doi.org/10.3390/ijms231810821
- Yilmaz N., Sandoval-Denis M., Lombard L. et al. Redefining species limits in the Fusarium fujikuroi species complex. Persoonia. 2021. V. 46. P. 129–162. https://doi.org/10.3767/persoonia.2021.46.05
- Zhang H., Brankovics B., Luo W. et al. Crops are a main driver for species diversity and the toxigenic potential of Fusarium isolates in maize ears in China. World Mycotoxin J. 2016. V. 9. P. 701–715 https://doi.org/10.3920/WMJ2015.2004
- Zheng W., Zhao X., Xie Q. et al. A conserved homeobox transcription factor Htf1 is required for phialide development and conidiogenesis in Fusarium species. PLOS One. 2012. V. 7. P. e45432. https://doi.org/10.1371/journal.pone.0045432
Дополнительные файлы
