Recombinant VLP vaccines synthesized in plant expression systems: current updates and prospects
- Authors: Rozov S.M.1, Deineko E.V.1
-
Affiliations:
- Institute of Cytology and Genetics, Siberian Brunch, Russian Academy of Sciences
- Issue: Vol 58, No 3 (2024)
- Pages: 385-402
- Section: ОБЗОРЫ
- URL: https://journals.eco-vector.com/0026-8984/article/view/655315
- DOI: https://doi.org/10.31857/S0026898424030047
- EDN: https://elibrary.ru/JDBSHP
- ID: 655315
Cite item
Abstract
The development and creation of a new generation vaccines based on recombinant proteins that assemble into virus-like particles (VLPs), as well as recombinant proteins in the form of nanoparticles are promising directions in modern biotechnology. Due to their large size (20–200 nm) and a multiplicity of viral antigenic determinants on the surface, VLPs can stimulate strong humoral and cellular immune responses. The review considered the main types of VLPs, as well as the features and disadvantages of the main expression systems used for their biosynthesis. The main focus was on plant expression systems that ensure the biosynthesis of a target recombinant protein from a DNA matrix integrated into the nuclear or chloroplast genomes of a plant (stable expression) or from a matrix for temporary production of the target product (transient expression). Various approaches for increasing the yield of VLP-forming recombinant proteins, including fusion with a transit peptide that directed the protein into the chloroplast, were discussed. The possibility of accumulation of recombinant proteins expressed in plants and intended for creation of VLP-vaccines in another type of nanoparticles, protein bodies, using specific signal sequences was also considered.
Full Text

About the authors
S. M. Rozov
Institute of Cytology and Genetics, Siberian Brunch, Russian Academy of Sciences
Author for correspondence.
Email: rozov@bionet.nsc.ru
Russian Federation, Novosibirsk, 630090
E. V. Deineko
Institute of Cytology and Genetics, Siberian Brunch, Russian Academy of Sciences
Email: deineko@bionet.nsc.ru
Russian Federation, Novosibirsk, 630090
References
- Yan X., Zhou M., Yu S., Jin Z., Zhao K. (2020) An overview of biodegradable nanomaterials and applications in vaccines. Vaccine. 38, 1096–1104. doi: 10.1016/j.vaccine.2019.11.031
- Aida V., Pliasas V.C., Neasham P.J., North J.F., McWhorter K.L., Glover S.R., Kyriakis C.S. (2021) Novel vaccine technologies in veterinary medicine: a herald to human medicine vaccines. Front. Vet. Sci. 8, 654289. doi: 10.3389/fvets.2021.654289
- Lampinen V., Heinimäki S., Laitinen O.H., Pesu M., Hankaniemi M.M., Blazevic V., Hytönen V.P. (2021) Modular vaccine platform based on the norovirus-like particle. J. Nanobiotechnol. 19, 25. doi: 10.1186/s12951-021-00772-0
- Noad R., Roy P. (2003) Virus-like particles as immunogens. Trends Microbiol. 11, 438–444. doi: 10.1016/s0966-842x(03)00208-7
- Brisse M., Vrba S.M., Kirk N., Liang Y., Ly H. (2020) Emerging concepts and technologies in vaccine development. Front. Immunol. 11, 2578. doi: 10.3389/fimmu.2020.583077
- Hyman P., Trubl G., Abedon S.T. (2021) Virus-like particle: evolving meanings in different disciplines. Phage (New Rochelle). 2(1), 11–15. doi: 10.1089/phage.2020.0026
- Bancroft J.B., Wagner G.W., Bracker C.E. (1968) The self-assembly of a nucleic-acid free pseudo-top component for a small spherical virus. Virology. 36, 146–149. doi: 10.1016/0042-6822(68)90126-8
- Erickson J.W., Bancroft J.B., Horne R.W. (1976) The assembly of papaya mosaic virus protein. Virology. 72, 514–517. doi: 10.1016/0042-6822(76)90180-X
- Mohsen M.O., Zha L., Cabral-Miranda G., Bachmann M.F. (2017) Major findings and recent advances in virus-like particle (VLP)-based vaccines. Semin. Immunol. 34, 123–132. doi: 10.1016/j.smim.2017.08.014
- Zhang L., Xu W., Ma X., Sun X., Fan J., Wang Y. (2023) Virus-like particles as antiviral vaccine: mechanism, design, and application. Biotechnol. Bioprocess Eng. 28(1), 1–16. doi: 10.1007/s12257-022-0107-8
- Сёмин Б.В., Ильин Ю.В. (2019) Вирусоподобные частицы как инструмент для производства вакцин. Молекуляр. биология. 53(3), 367–379.
- Huang Z., Chen Q., Hjelm B., Arntzen C., Mason H.A. (2009) DNA replicon system for rapid high-level production of virus-like particles in plants. Biotechnol. Bioeng. 103, 706–714. doi: 10.1002/bit.22299
- He J., Lai H., Brock C., Chen Q. (2012) A novel system for rapid and cost-effective production of detection and diagnostic reagents of West Nile virus in plants. J. Biomed. Biotechnol. 2012, 106783. doi: 10.1155/2012/106783
- Santi L., Batchelor L., Huang Z., Hjelm B., Kilbourne J., Arntzen C.J., Chen Q., Mason H.S. (2008) An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles. Vaccine. 26, 1846–1854. doi: 10.1016/j.vaccine.2008.01.053
- Chroboczek J., Szurgot I., Szolajska E. (2014) Virus-like particles as vaccine. Acta Biochim. Pol. 61(3), 531–539. doi: 10.18388/abp.2014_1875
- Naskalska A., Pyrc K. (2015) Virus like particles as immunogens and universal nanocarriers. Pol. J. Microbiol. 64, 3–13.
- Keikha R., Daliri K., Jebali A. (2021) The use of nanobiotechnology in immunology and vaccination. Vaccines (Basel). 9, 74. doi: 10.3390/vaccines9020074
- Bundy B.C., Swartz J.R. (2011) Efficient disulfide bond formation in virus-like particles. J. Biotechnol. 154, 230–239. doi: 10.1016/j.jbiotec.2011.04.011
- Bundy B.C., Franciszkowicz M.J., Swartz J.R. (2008) Escherichia coli-based cell-free synthesis of virus-like particles. Biotechnol. Bioeng. 100, 28–37. doi: 10.1002/bit.21716
- Lua L.H., Connors N.K., Sainsbury F., Chuan Y.P., Wibowo N., Middelberg A.P. (2014) Bioengineering virus-like particles as vaccines. Biotechnol. Bioeng. 111, 425–440. doi: 10.1002/bit.25159
- Li H.-Y., Han J.-F., Qin C.-F., Chen R. (2013) Virus-like particles for enterovirus 71 produced from Saccharomyces cerevisiae potently elicits protective immune responses in mice. Vaccine. 31, 3281–3287. doi: 10.1016/j.vaccine.2013.05.019
- Fernandes F., Teixeira A.P., Carinhas N., Carrondo M.J., Alves P.M. (2013) Insect cells as a production platform of complex virus-like particles. Expert Rev. Vaccines. 12, 225–236. doi: 10.1586/erv.12.153
- Scotti N., Rybicki E.P. (2013) Virus-like particles produced in plants as potential vaccines. Expert Rev. Vaccines. 12, 211–224. doi: 10.1586/erv.12.147
- French T., Roy P. (1990) Synthesis of bluetongue virus (BTV) corelike particles by a recombinant baculovirus expressing the two major structural core proteins of BTV. J. Virol. 64, 1530–1536. doi: 10.1128/jvi.64.4.1530-1536.1990
- Lin Y.-L., Yu C.-I., Hu Y.-C., Tsai T.-J., Kuo Y.-C., Chi W.-K., Lin A.N., Chiang B.L. (2012) Enterovirus type 71 neutralizing antibodies in the serum of macaque monkeys immunized with EV71 virus-like particles. Vaccine. 30, 1305–1312. doi: 10.1016/j.vaccine.2011.12.081
- Brautigam S., Snezhkov E., Bishop D.H. (1993) Formation of poliovirus-like particles by recombinant baculoviruses expressing the individual VP0, VP3, and VP1 proteins by comparison to particles derived from the expressed poliovirus polyprotein. Virology. 192, 512–524. doi: 10.1006/viro.1993.1067
- Vieira H.L., Estevao C., Roldao A., Peixoto C.C., Sousa M.F., Cruz P.E., Carrondo M.J., Alves P.M. (2005) Triple layered rotavirus VLP production: kinetics of vector replication, mRNA stability and recombinant protein production. J. Biotechnol. 120, 72–82. doi: 10.1016/j.jbiotec.2005.03.026
- Kirnbauer R., Taub J., Greenstone H., Roden R., Durst M., Gissmann L., Lowy D.R., Schiller J.T. (1993) Efficient self-assembly of human papillomavirus type 16 L1 and L1–L2 into virus-like particles. J. Virol. 67, 6929–6936. doi: 10.1128/jvi.67.12.6929-6936.1993
- Nooraei S., Bahrulolum H., Hoseini Z.S., Katalani C., Hajizade A., Easton A.J., Ahmadian G. (2021) Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J. Nanobiotechnol. 19, 59. doi: 10.1186/s12951-021-00806-7
- Baumert T.F., Ito S., Wong D.T., Liang T.J. (1998) Hepatitis C virus structural proteins assemble into virus-like particles in insect cells. J. Virol. 72, 3827–3836. doi: 10.1128/JVI.72.5.3827-3836.1998
- Kushnir N., Streatfield S.J., Yusibov V. (2012) Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine. 31, 58–83. doi: 10.1016/j.vaccine.2012.10.083
- Welsch S., Muller B., Krausslich H.-G. (2007) More than one door – budding of enveloped viruses through cellular membranes. FEBS Lett. 581, 2089–2097. doi: 10.1016/j.febslet.2007.03.060
- Zhang P., Narayanan E., Liu Q., Tsybovsky Y., Boswell K., Ding S., Hu Z, Follmann D., Lin Y., Miao H., Schmeisser H., Rogers D., Falcone S., Elbashir S.M., Presnyak V., Bahl K., Prabhakaran M., Chen X., Sarfo E.K., Ambrozak D.R., Gautam R., Martin M.A., Swerczek J., Herbert R., Weiss D., Misamore J., Ciaramella G., Himansu S., Stewart-Jones G., McDermott A., Koup R.A., Mascola J.R., Finzi A., Carfi A., Fauci A.S., Lusso P. (2021) A multiclade env–gag VLP mRNA vaccine elicits tier-2 HIV-1-neutralizing antibodies and reduces the risk of heterologous SHIV infection in macaques. Nat. Med. 27, 2234–2245. doi: 10.1038/s41591-021-01574-5
- Mortola E., Roy P. (2004) Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Lett. 576, 174–178. doi: 10.1016/j.febslet.2004.09.009
- Rudd P.M., Wormald M.R., Stanfield R.L., Huang M., Mattsson N., Speir J.A., DiGennaro J.A., Fetrow J.S., Dwek R.A., Wilson I.A. (1999) Roles for glycosylation of cell surface receptors involved in cellular immune recognition. J. Mol. Biol. 293, 351–366. doi: 10.1006/jmbi.1999.3104
- Fontes-Garfias C.R., Shan C., Luo H., Muruato A.E., Medeiros D.B., Mays E., Xie X., Zou J., Roundy C.M., Wakamiya M., Rossi S.L., Wang T., Weaver S.C., Shi P.Y. (2017) Functional analysis of glycosylation of Zika virus envelope protein. Cell Rep. 21, 1180–1190. doi: https://doi.org/10.1016/j.celrep.2017.10.016
- Bryant J.E., Calvert A.E., Mesesan K., Crabtree M.B., Volpe K.E., Silengo S., Kinney R.M., Huang C.Y., Miller B.R., Roehrig J.T. (2007) Glycosylation of the dengue 2 virus E protein at N67 is critical for virus growth in vitro but not for growth in intrathoracic inoculated Aedes aegypti mosquitoes. Virology. 366, 415–423. doi: 10.1016/j.virol.2007.05.007
- Marsian J., Fox H., Bahar M.W., Kotecha A., Fry E.E., Stuart D.I., Macadam A.J., Rowlands D.J., Lomonossoff G.P. (2017) Plant-made polio type 3 stabilized VLPs – a candidate synthetic polio vaccine. Nat. Commun. 8, 245. doi: 10.1038/s41467-017-00090-w
- Chen B.J., Leser G.P., Morita E., Lamb R.A. (2007) Influenza virus hemagglutinin and neuraminidase, but not the matrix protein, are required for assembly and budding of plasmid-derived virus-like particles. J. Virol. 81, 7111–7123. doi: 10.1128/JVI.00361-07
- Yamshchikov G.V., Ritter G.D., Vey M., Compans R.W. (1995) Assembly of SIV virus-like particles containing envelope proteins using a baculovirus expression system. Virology. 214, 50–58. doi: 10.1006/viro.1995.9955
- McGinnes L.W., Pantua H., Laliberte J.P., Gravel K.A., Jain S., Morrison T.G. (2010) Assembly and biological and immunological properties of Newcastle disease virus-like particles. J. Virol. 84, 4513–4523. doi: 10.1128/JVI.01931-09
- Wetzel D., Barbian A., Jenzelewski V., Schembecker G., Merz J., Piontek M. (2019) Bioprocess optimization for purification of chimeric VLP displaying BVDV E2 antigens produced in yeast Hansenula polymorpha. J. Biotechnol. 306, 203–212. doi: 10.1016/j.jbiotec.2019.10.008
- Latham T., Galarza J.M. (2001) Formation of wild-type and chimeric influenza virus-like particles following simultaneous expression of only four structural proteins. J. Virol. 75, 6154–6165. doi: 10.1128/JVI.75.13.6154-6165
- Caldeira J.C., Perrine M., Pericle F., Cavallo F. (2020) Virus-like particles as an immunogenic platform for cancer vaccines. Viruses. 12, 488. doi: 10.3390/v12050488
- Tremouillaux-Guiller J., Moustafa K., Hefferon K., Gaobotse G., Makhzoum, A. (2020) Plant-made HIV vaccines and potential candidates. Curr. Opin. Biotechnol. 61, 209–216. doi: 10.1016/j.copbio.2020.01.004
- Andersson A.C., Schwerdtfeger M., Holst P.J. (2018) Virus-like-vaccines against HIV. Vaccines (Basel). 6, 10. doi: 10.3390/vaccines6010010
- Qian C., Liu X., Xu Q., Wang Z., Chen J., Li T., Zheng Q., Yu H., Gu Y., Li S., Xia N. (2020) Recent progress on the versatility of virus-like particles. Vaccines (Basel). 8, 139. doi: 10.3390/vaccines8010139
- Huang X., Wang X., Zhang J., Xia N., Zhao Q. (2017) Escherichia coli-derived virus-like particles in vaccine development. NPJ Vaccines. 2, 3. doi: 10.1038/s41541-017-0006-8
- Balke I., Zeltins A. (2020) Recent advances in the use of plant virus-like particles as vaccines. Viruses. 12, 270. doi: 10.3390/v12030270
- Chichester J.A., Green B.J., Jones R.M., Shoji Y., Miura K., Long C.A., Yusibov V. (2018) Safety and immunogenicity of a plant-produced Pfs25 virus-like particle as a transmission blocking vaccine against malaria: a phase 1 dose-escalation study in healthy adults. Vaccine. 36, 5865–5871. doi: 10.1016/j.vaccine.2018.08.33
- Chackerian B. (2010) Virus-like particle based vaccines for Alzheimer disease. Hum. Vaccin. 6, 926–930. doi: 10.4161/hv.6.11.12655
- Mohsen M.O., Bachmann M.F. (2022) Virus-like particle vaccinology, from bench to bedside. Cell. Mol. Immunol. 19, 993–1011. doi: 10.1038/s41423-022-00897-8
- Namdeo N., Arora R., Jha H. (2023) Biomedical application of advanced microbial approaches: nutraceuticals, biomedicine, and vaccine development. In: Industrial Microbiology and Biotechnology: Emerging Concepts in Microbial Technology. Ed. Verma P. Singapore: Springer, pp. 273–297. doi: 10.1007/978-981-99-2816-3_9
- Ren J., Bell G., Coy D., Brunicardi F. (1997) Activation of human somatostatin receptor type 2 causes inhibition of cell growth in transfected HEK293 but not in transfected CHO cells J. Surg. Res. 71, 13–18. doi: 10.1006/jsre.1997.5097
- Donaldson B., Al-Barwani F., Young V., Scullion S., Ward V., Young S. (2015) Virus-like particles, a versatile subunit vaccine platform. In: Subunit Vaccine Delivery. Advances in Delivery Science and Technology. Eds Foged C., Rades T., Perrie Y., Hook S. New York: Springer. pp. 159–180. doi: 10.1007/978-1-4939-1417-3_9
- Chang. G.-D., Chen C.-J., Lin C.-Y., Chen H.-C., Chen H. (2003) Improvement of glycosylation in insect cells with mammalian glycosyltransferases. J. Biotechnol. 102, 61–71. doi: 10.1016/S0168-1656(02)00364-4
- Glass P.J., White L.J, Ball J.M., Leparc-Goffart I., Hardy M.E., Estes M.K. (2000) Norwalk virus open reading frame 3 encodes a minor structural protein. J. Virol. 74, 6581–6591. doi: 10.1128/JVI.74.14.6581-6591.2000
- Gleba Y., Klimyuk V., Marillonnet S. (2005) Magnifection – a new platform for expressing recombinant vaccines in plants. Vaccine. 23, 2042–2048. doi: 10.1016/j.vaccine.2005.01.006
- Sainsbury F., Lomonossoff G.P. (2008) Extremely high-level and rapid transient protein production in plants without the use of viral replication. Plant Physiol. 148, 1212–1218. doi: 10.1104/pp.108.126284
- Nikitin N., Vasiliev Y., Kovalenko A., Ryabchevskaya E., Kondakova O., Evtushenko E., Karpova O. (2023) Plant viruses as adjuvants for next-generation vaccines and immunotherapy. Vaccines (Basel). 11, 1372. doi: 10.3390/vaccines11081372
- Zhang T., Breitbart M., Lee W.H., Run J.-Q., Wei C.L., Soh S.W.L., Hibberd M.L., Liu E.T., Rohwer F., Ruan Y. (2005) RNA viral community in human feces: prevalence of plant pathogenic viruses. PLoS Biol. 4, e3. doi: 10.1371/journal.pbio.0040003
- Venkataraman S., Hefferon K. (2021) Application of plant viruses in biotechnology, medicine, and human health. Viruses. 13, 1697. doi: 10.3390/v13091697
- Yusibov V., Modelska A., Steplewski K., Agadjanyan M., Weiner D., Hooper D.C., Koprowski H. (1997) Antigens produced in plants by infection with chimeric plant viruses immunize against rabies virus and HIV-1. Proc. Natl. Acad. Sci. USA. 94, 5784–5788. doi: 10.1073/pnas.94.11.5784
- Jones R.M., Chichester J.A., Mett V., Jaje J., Tottey S., Manceva S., Casta L.J., Gibbs S.K., Musiychuk K., Shamloul M., Norikane J., Mett V., Streatfield S.J., van de Vegte-Bolmer M., Roeffen W., Sauerwein R.W., Yusibov V. (2013) A plant-produced Pfs25 VLP malaria vaccine candidate induces persistent transmission blocking antibodies against Plasmodium falciparum in immunized mice. PLoS One. 8, e79538. doi: 10.1371/journal.pone.0079538
- Yusibov V., Mett V., Mett V., Davidson C., Musiychuk K., Gilliam S., Farese A., Macvittie T., Mann D. (2005) Peptide-based candidate vaccine against respiratory syncytial virus. Vaccine. 23, 2261–2265. doi: 10.1016/j.vaccine.2005.01.039
- Zinkhan S., Ogrina A., Balke I., Resevica G., Zeltins A., de Brot S., Lipp C., Chang X., Zha L., Vogel M. (2021) The impact of size on particle drainage dynamics and antibody response. J. Control Release. 331, 296–308. doi: 10.1016/j.conrel.2021.01.012
- Pomwised R., Intamaso U., Teintze M., Young M., Pincus S.H. (2016) Coupling peptide antigens to virus-like particles or to protein carriers influences the Th1/Th2 polarity of the resulting immune response. Vaccines (Basel). 4, 15. doi: 10.3390/vaccines4020015
- Santoni M., Zampieri R., Avesani L. (2020) Plant virus nanoparticles for vaccine applications. Curr. Protein Pept. Sci. 21, 344–356. doi: 10.2174/1389203721666200212100255
- Kalnciema I., Skrastina D., Ose V., Pumpens P., Zeltins A. (2012) Potato virus Y-like particles as a new carrier for the presentation of foreign protein stretches. Mol. Biotechnol. 52, 129–139. doi: 10.1007/s12033-011-9480-9
- Ogrina A., Skrastina D., Balke I., Kalnciema I., Jansons J., Bachmann M.F., Zeltins A. (2022) Comparison of bacterial expression systems based on potato virus Y-like particles for vaccine generation. Vaccines (Basel). 10, 485. doi: 10.3390/vaccines10040485
- Leclerc D., Rivest M., Babin C., López-Macias C., Savard P. (2013) A novel M2e based flu vaccine formulation for dogs. PloS One. 8, e77084. doi: 10.1371/journal.pone.0077084
- Hu H., Steinmetz N.F. (2021) Development of a virus-like particle-based anti-HER2 breast cancer vaccine. Cancers. 13, 2909. doi: 10.3390/cancers13122909
- Denis J., Majeau N., Acosta-Ramirez E., Savard C., Bedard M.C., Simard S., Leclerc D. (2007) Immunogenicity of papaya mosaic virus-like particles fused to a hepatitis C virus epitope: evidence for the critical function of multimerization. Virology. 363, 59–68. doi: 10.1016/j.virol.2007.01.011
- Mathieu C., Rioux G., Dumas M.C., Leclerc D. (2013) Induction of innate immunity in lungs with virus-like nanoparticles leads to protection against influenza and Streptococcus pneumoniae challenge. Nanomedicine. 9, 839–848. doi: 10.1016/j.nano.2013.02.009
- Lebel M.È., Daudelin J.F., Chartrand K., Tarrab E., Kalinke U., Savard P., Lamarre A. (2014) Nanoparticle adjuvant sensing by TLR7 enhances CD8+ T cell-mediated protection from Listeria monocytogenes infection. J. Immunol. 192, 1071–1078. doi: 10.4049/jimmunol.1302030
- Palmer K.E., Benko A., Doucette S.A., Cameron T.I., Foster T., Hanley K.M., Christensen N.D. (2006) Protection of rabbits against cutaneous papillomavirus infection using recombinant tobacco mosaic virus containing L2 capsid epitopes. Vaccine. 24, 5516–5525. doi: 10.1016/j.vaccine.2006.04.058
- Zeltins A., West J., Zabel F., El Turabi A., Balke I., Haas S., Bachmann M.F. (2017) Incorporation of tetanus-epitope into virus-like particles achieves vaccine responses even in older recipients in models of psoriasis, Alzheimer’s and cat allergy. NPJ Vaccines. 2, 30. doi: 10.1038/s41541-017-0030-8
- Manuel-Cabrera C.A., Vallejo-Cardona A.A., Padilla-Camberos E., Hernández-Gutiérrez R., Herrera-Rodríguez S.E., Gutiérrez-Ortega A. (2016) Self-assembly of hexahistidine-tagged tobacco etch virus capsid protein into microfilaments that induce IgG2-specific response against a soluble porcine reproductive and respiratory syndrome virus chimeric protein. Virol. J. 13(1), 196. doi: 10.1186/s12985-016-0651-y
- D’Aoust M.A., Couture M.M.J., Charland N., Trepanier S., Landry N., Ors F., Vézina L.P. (2010) The production of hemagglutinin-based virus-like particles in plants: a rapid, efficient and safe response to pandemic influenza. Plant Biotechnol. J. 8, 607–619. doi: 10.1111/j.1467-7652.2009.00496.x
- Pillet S., Racine T., Nfon C., Di Lenardo T.Z., Babiuk S., Ward B.J., Kobinger G.P., Landry N. (2015) Plant-derived H7 VLP vaccine elicits protective immune response against H7N9 influenza virus in mice and ferrets. Vaccine. 33, 6282–6289. doi: 10.1016/j.vaccine.2015.09.065
- Dennis S.J., Meyers A.E., Guthrie A.J., Hitzeroth I.I., Rybicki E.P. (2018) Immunogenicity of plant-produced African horse sickness virus-like particles: implications for a novel vaccine. Plant Biotechnol. J. 16, 442–450. doi: 10.1111/pbi.12783
- Eidenberger L., Kogelmann B., Steinkellner H. (2023) Plant-based biopharmaceutical engineering. Nat. Rev. Bioeng. 1, 426–439. doi: 10.1038/s44222-023-00044-6
- Joung Y.H., Park S.H., Moon K.-B., Jeon J.-H., Cho H.-S., Kim H.-S. (2016) The last ten years of advancements in plant-derived recombinant vaccines against hepatitis B. Int. J. Mol. Sci. 17, 1715. doi: 10.3390/ijms17101715
- Pirahmadi S., Afzali S., Zargar M., Zakeri S., Mehrizi A.A. (2021) How can we develop an effective subunit vaccine to achieve successful malaria eradication? Microb. Pathog. 160, 105203. doi: 10.1016/j.micpath.2021.105203
- Stander J., Mbewana S., Meyers A.E. (2022) Plant-derived human vaccines: recent developments. BioDrugs. 36, 573–589. doi: 10.1007/s40259-022-00544-8
- Ward B.J.; Séguin A., Couillard J., Trépanier S., Landry N. (2021) Phase III: randomized observer-blind trial to evaluate lot-to-lot consistency of a new plant-derived quadrivalent virus like particle influenza vaccine in adults 18–49 years of age. Lancet. 396, 1491–1503. doi: 10.1016/S0140-6736(20)32014-6
- Ward B.J., Gobeil P., Séguin A., Atkins J., Boulay I., Charbonneau P.Y., Couture M., D’Aoust M.A., Dhaliwall J., Finkle C., Hager K., Mahmood A., Makarkov A., Cheng M.P., Pillet S., Schimke P., St-Martin S., Trépanier S., Landry N. (2021) Phase 1 randomized trial of a plant-derived virus-like particle vaccine for COVID-19. Nat. Med. 27, 1071–1078. doi: 10.3390/life13030617
- Hager K.J., Perez Marc G., Gobeil P., Diaz R.S., Heizer G., Llapur C., Makarkov A.I., Vasconcellos E., Pillet S., Riera F., Saxena P., Geller Wolff P., Bhutada K., Wallace G., Aazami H., Jones C.E., Polack F.P., Ferrara L., Atkins J., Boulay I., Dhaliwall J., Charland N., Couture M.M.J., Jiang-Wright J., Landry N., Lapointe S., Lorin A., Mahmood A., Moulton L.H., Pahmer E., Parent J., Séguin A., Tran L., Breuer T., Ceregido M.A., Koutsoukos M., Roman F., Namba J., D’Aoust M.A., Trepanier S., Kimura Y., Ward B.J.; CoVLP Study Team. (2022) Efficacy and safety of a recombinant plant-based adjuvanted COVID-19 vaccine. N. Engl. J. Med. 386, 2084–2096. doi: 10.1056/NEJMoa2201300
- Royal J.M., Simpson C.A., McCormick A.A., Phillips A., Hume S., Morton J., Shepherd J., Oh Y., Swope K., De Beauchamp J.L., Webby R.J., Cross R.W., Borisevich V., Geisbert T.W., Demarco J.K., Bratcher B., Haydon H., Pogue G.P. (2021) Development of a SARS-CoV-2 vaccine candidate using plant-based manufacturing and a tobacco mosaic virus-like nano-particle. Vaccines (Basel). 9, 1347. doi: 10.3390/vaccines9111347
- Demarco J.K., Royal J.M., Severson W.E., Gabbard J.D., Hume S., Morton J., Swope K., Simpson C.A., Shepherd J.W., Bratcher B., Palmer K.E., Pogue G.P. (2021) CoV-RBD121-NP vaccine candidate protects against symptomatic disease following SARS-CoV-2 challenge in K18-hACE2 mice and induces protective responses that prevent COVID-19-associated immunopathology. Vaccines (Basel). 9, 1346. doi: 10.3390/vaccines9111346
- Kumar A.U., Kadiresen K., Gan W.C., Ling A.P.K. (2021) Current updates and research on plant-based vaccines for coronavirus disease 2019. Clin. Exp. Vaccine Res. 10, 13. doi: 10.7774/cevr.2021.10.1.13
- Yang M., Lai H., Sun H., Che Q. (2017) Virus-like particles that display Zika virus envelope protein domain III induce potent neutralizing immune responses in mice. Sci. Rep. 7, 7679. doi: 10.1038/s41598-017-08247-9
- Langerak T., Mumtaz N., Koopmans M., Schoenmakers S., Rockx B. (2022) Comparative analysis of in vitro models to study antibody-dependent enhancement of Zika virus infection. Viruses. 14, 2776. doi: 10.3390/v14122776
- Cabral-Miranda G., Lim S.M., Mohsen M.O., Pobelov I.V., Roesti E.S., Heath M.D., Skinner M.A., Kramer M.F., Martina B.E.E., Bachmann M.F. (2019) Zika virus-derived E-DIII protein displayed on immunologically optimized VLPs induces neutralizing antibodies without causing enhancement of Dengue virus infection. Vaccines (Basel). 7, 72. doi: 10.3390/vaccines7030072
- Pang E.L., Peyret H., Ramirez A., Loh H.S., Lai K.S., Fang C.M., Rosenberg W.M., Lomonossoff G.P. (2019) Epitope presentation of dengue viral envelope glycoprotein domain III on hepatitis B core protein virus-like particles produced in Nicotiana benthamiana. Front. Plant Sci. 10, 455. doi: https://doi.org/10.3389/fpls.2019.00455
- Ponndorf D., Meshcheriakova Y., Thuenemann E.C., Dobon Alonso A., Overman R., Holton N., Dowall S., Kennedy E., Stocks M., Lomonossoff G.P., Peyret H. (2021) Plant‐made dengue virus‐like particles produced by co‐expression of structural and non‐structural proteins induce a humoral immune response in mice. Plant Biotechnol. J. 19, 745–756. doi: 10.1111/pbi.13501
- Asghar N., Melik W., Paulsen K.M., Pedersen B.N., Bø-Granquist E.G., Vikse R., Stuen S., Andersson S., Strid Å., Andreassen Å.K., Johansson M. (2022) Transient expression of Flavivirus structural proteins in Nicotiana benthamiana. Vaccines (Basel). 10, 1667. doi: 10.3390/vaccines10101667
- Jääskeläinen A., Han X., Niedrig M., Vaheri A., Vapalahti O. (2003) Diagnosis of tick-borne encephalitis by a μ-capture immunoglobulin M-enzyme immunoassay based on secreted recombinant antigen produced in insect cells. J. Clin. Microbiol. 41, 4336–4342. doi: 10.1128/JCM.41.9.4336-4342.2003
- Chen T.H., Hu C.C., Liao J.T., Lee Y.L., Huang Y.W., Lin N.S., Lin Y.L., Hsu Y.H. (2017) Production of Japanese encephalitis virus antigens in plants using bamboo mosaic virus-based vector. Front. Microbiol. 8, 788. doi: 10.3389/fmicb.2017.00788
- Mackenzie J.S., Gubler D.J., Petersen L.R. (2004) Emerging Flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and Dengue viruses. Nat. Med. 10, S98–S109. doi: https://doi.org/10.1038/nm1144
- He J., Lai H., Esqueda A., Chen Q. (2021) Plant-produced antigen displaying virus-like particles evokes potent antibody responses against West Nile virus in mice. Vaccines (Basel). 9, 60. doi: 10.3390/vaccines9010060
- Chen Q. (2015) Plant-made vaccines against West Nile virus are potent, safe, and economically feasible. Biotechnol. J. 10, 671–680. doi: 10.1002/biot.201400428
- Mohsen M.O., Speiser D.E., Knuth A., Bachmann M.F. (2020) Virus-like particles for vaccination against cancer. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 12, e1579. doi: 10.1002/wnan.1579
- Shanmugaraj B., Malla A., Bulaon C.J.I., Phoolcharoen W., Phoolcharoen N. (2022) Harnessing the potential of plant expression system towards the production of vaccines for the prevention of human papillomavirus and cervical cancer. Vaccines (Basel). 10, 2064. doi: 10.3390/vaccines10122064
- Kessans S.A., Linhart M.D., Matoba N., Mor T. (2013) Biological and biochemical characterization of HIV‐1 Gag/dgp41 virus‐like particles expressed in Nicotiana benthamiana. Plant Biotechnol. J. 11, 681–690. doi: 10.1111/pbi.12058
- Rozov S.M., Zagorskaya A.A., Konstantinov Y.M., Deineko E.V. (2023) Three parts of the plant genome: on the way to success in the production of recombinant proteins. Plants (Basel). 12, 38. doi: 10.3390/plants12010038
- Dubey K.K., Luke G.A., Knox C., Kumar P., Pletschke B.I., Singh P.K., Shukla P. (2018) Vaccine and antibody production in plants: developments and computational tools. Brief. Funct. Genomics. 17, 295–307. doi: 10.1093/bfgp/ely020
- Fernández‐San Millán A., Ortigosa S.M., Hervás‐Stubbs S., Corral‐Martínez P., Seguí‐Simarro J.M., Gaétan J., Coursaget P., Veramendi J. (2008) Human papillomavirus L1 protein expressed in tobacco chloroplasts self‐assembles into virus‐like particles that are highly immunogenic. Plant Biotechnol. J. 6, 427–441. doi: 10.1111/j.1467-7652.2008.00338.x
- Lenzi P., Scotti N., Alagna F., Tornesello M.L., Pompa A., Vitale A., Cardi T. (2008) Translational fusion of chloroplast-expressed human papillomavirus type 16 L1 capsid protein enhances antigen accumulation in transplastomic tobacco. Transgenic Res. 17, 1091–1102. doi: 10.1007/s11248-008-9186-3
- Waheed M.T., Thönes N., Müller M., Hassan S.W., Razavi N.M., Lössl E., Lössl A.G. (2011) Transplastomic expression of a modified human papillomavirus L1 protein leading to the assembly of capsomeres in tobacco: a step towards cost-effective second-generation vaccines. Transgenic Res. 20, 271–282. doi: 10.1007/s11248-010-9415-4
- Scotti N., Alagna F., Ferraiolo E., Formisano G., Sannino L., Buonaguro L., De Stradis A., Vitale A., Monti L., Grillo S., Buonaguro F.M., Cardi T. (2009) High-level expression of the HIV-1 Pr55gag polyprotein in transgenic tobacco chloroplasts. Planta. 229, 1109–1122. doi: 10.1007/s00425-009-0898-2
- Kanagaraj A.P., Verma D., Daniell H. (2011) Expression of dengue-3 premembrane and envelope polyprotein in lettuce chloroplast. Plant Mol. Biol. 76, 323–333. doi: 10.1007/s11103-011-9766-0
- Daniell H., Rai V., Xiao Y. (2019) Cold chain and virus‐free oral polio booster vaccine made in lettuce chloroplasts confers protection against all three poliovirus serotypes. Plant Biotechnol. J. 17, 1357–1368. doi: 10.1111/pbi.13060
- Nakahira Y., Mizuno K., Yamashita H., Tsuchikura M., Takeuchi K., Shiina T., Kawakami H. (2021) Mass production of virus-like particles using chloroplast genetic engineering for highly immunogenic oral vaccine against fish disease. Front. Plant Sci. 12, 717952. doi: 10.3389/fpls.2021.717952
- Muthamilselvan T., Kim J.S., Cheong G., Hwang I. (2019) Production of recombinant proteins through sequestration in chloroplasts: a strategy based on nuclear transformation and post-translational protein import. Plant Cell Rep. 38, 825–833. doi: 10.1007/s00299-019-02431-z
- Maclean J., Koekemoer M., Olivier A.J., Stewart D., Hitzeroth I.I., Rademacher T., Fischer R., Williamson A.L., Rybicki E.P. (2007) Optimization of human papillomavirus type 16 (HPV-16) L1 expression in plants: comparison of the suitability of different HPV-16 L1 gene variants and different cell-compartment localization. J. Gen. Virol. 88, 1460–1469. doi: 10.1099/vir.0.82718-0
- Muthamilselvan T., Khan M.R.I., Hwang I. (2023) Assembly of human papillomavirus 16 L1 protein in Nicotiana benthamiana chloroplasts into highly immunogenic virus-like particles. J. Plant Biol. 66, 331–340. doi: 10.1007/s12374-023-09393-6
- Park Y., Min K., Kim N.H., Kim J.H., Park M., Kang H., Sohn E.J., Lee S. (2021) Porcine circovirus 2 capsid protein produced in N. benthamiana forms virus-like particles that elicit production of virus-neutralizing antibodies in guinea pigs. N. Biotechnol. 63, 29–36. doi: 10.1016/j.nbt.2021.02.005
- Kogan M.J., Dalcol I., Gorostiza P., Lopez-Iglesias C., Pons R., Pons M., Sanz F., Giralt E. (2002) Supramolecular properties of the proline-rich gamma-zein N-terminal domain. Biophys. J. 83, 1194–1204. doi: 10.1016/S0006-3495(02)75243-0
- Torrent M., Llop-Tous I., Ludevid M.D. (2009) Protein body induction: a new tool to produce and recover recombinant proteins in plants. In: Recombinant Proteins from Plants: Methods and Protocols. Eds Gomord V., Faye L. Totowa, NJ: Humana Press, pp. 193–208. doi: 10.1007/978-1-59745-407-0_11
- Torrent M., Llompart B., Lasserre-Ramassamy S., Llop-Tous I., Bastida M., Marzabal P., Westernholm-Parvinen A., Saloheimo M., Htietz P.B., Ludevid M.D. (2009) Eukaryotic protein production in designed storage organelles. BMC Biol. 7, 5. doi: 10.1186/1741-7007-7-5
- Whitehead M., Öhlschläger P., Almajhdi F.N., Alloza L., Marzábal P., Meyers A.E., Hitzeroth I.I., Rybicki E.P. (2014) Human papillomavirus (HPV) type 16 E7 protein bodies cause tumour regression in mice. BMC Cancer. 14, 367. doi: 10.1186/1471-2407-14-367
- Ximba P.T. (2021) Investigation of particulate HIV-1 Env vaccine candidates using Zera® and SpyTag/SpyCatcher technologies. PhD Thesis, Faculty of Health Sciences, Department of Clinical Laboratory Sciences, University of Cape Town, South Africa. http://hdl.handle.net/11427/36730
- Conley A.J., Joensuu J.J., Jevnikar A.M., Menassa R., Brandle J.E. (2009) Optimization of elastin-like polypeptide fusions for expression and purification of recombinant proteins in plants. Biotechnol. Bioeng. 103, 562–573. doi: 10.1002/bit.22278
- Han Y., Pan J., Ma Y., Zhou D., Xu W. (2022) Protein-based biomaterials for combating viral infections: current status and future prospects for development. Biosafety Health. 4(2), 87–94. doi: 10.1016/j.bsheal.2022.03.005
- Joensuu J.J., Conley A.J., Lienemann M., Brandle J.E., Linder M.B., Menassa R. (2010) Hydrophobin fusions for high-level transient protein expression and purification in Nicotiana benthamiana. Plant Physiol. 152, 622–633. doi: 10.1104/pp.109.149021
- Rozov S.M., Deineko E.V. (2022) Increasing the efficiency of the accumulation of recombinant proteins in plant cells: the role of transport signal peptides. Plants (Basel). 11, 2561. doi: 10.3390/plants11192561
- Saberianfar R., Joensuu J.J., Conley A.J., Menassa R. (2015) Protein body formation in leaves of Nicotiana benthamiana: a concentration-dependent mechanism influenced by the presence of fusion tags. Plant Biotechnol. J. 13, 927–937. doi: 10.1111/pbi.12329
- Linder M.B., Qiao M., Laumen F., Selber K., Hyytiä T., Nakari-Setälä T., Penttilä M.E. (2004) Efficient purification of recombinant proteins using hydrophobins as tags in surfactant-based two-phase systems. Biochemistry. 43, 11873–11882. doi: 10.1021/bi0488202
Supplementary files
