GRIP1 is involved in the interaction of vimentin filaments with focal adhesions in endothelial cells

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Vimentin intermediate filaments are dynamic structures that are able to move in cytoplasm due to activity of the motor proteins, kinesin-1 and cytoplasmic dynein. How exactly motors interact with vimentin filaments remains unclear. In this work, I show that Glutamate Receptor Interacting Protein (GRIP1) known as adapter for kinesin-1 on neuronal cargoes is also a mediator for kinesin-1 interaction with vimentin filaments, and this interaction provides crosstalk between vimentin filaments and focal adhesions. GRIP1 associates with vimentin filaments in various cells and co-immunoprecipitates with vimentin from cell lysate. Human endothelial cells knockout by GRIP1 gene lose focal adhesions and dramatically change their adhesive properties. Hypothetically, kinesin-1 engages GRIP1 to deliver vimentin filaments to the cell periphery so that they make contact with focal adhesions and stabilize them.

全文:

受限制的访问

作者简介

F. Gyoeva

Institute of Protein Research, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: fgyoeva@gmail.com
俄罗斯联邦, Pouschino, Moscow Region, 142290

参考

  1. Hookway C., Ding L., Davidson M.W., Rappoport J.Z., Danuser G., Gelfand V.I. (2015) Microtubule-dependent transport and dynamics of vimentin intermediate filaments. Mol. Biol. Cell. 26, 1675–1686.
  2. Forry-Schaudies S., Murray J.M., Toyama Y., Holtzer H. (1986) Effects of colcemid and taxol on microtubules and intermediate filaments in chick embryo fibroblasts. Cell Motil. Cytoskeleton. 6, 324–338.
  3. Gyoeva F.K., Gelfand V.I. (1991) Coalignment of vimentin intermediate filaments with microtubules depends on kinesin. Nature. 353, 445–448.
  4. Robert A., Tian P., Adam S.A., Kittisopikul M., Jaqaman K., Goldman R.D., Gelfand V.I. (2019) Kinesin-dependent transport of keratin filaments: a unified mechanism for intermediate filament transport. FASEB J. 33, 388–399.
  5. Hollenbeck P.J., Bershadsky A.D., Pletjushkina O.Y., Tint I.S., Vasiliev J.M. (1989) Intermediate filament collapse is an ATP-dependent and actin-dependent process. J. Cell Sci. 92, 621–631.
  6. Fu M.M., Holzbaur E.L.F. (2014) Integrated regulation of motor-driven organelle transport by scaffolding proteins. Trends Cell Biol. 24, 564–574.
  7. Bershadsky A.B., Tint I.S., Svitkina T.M. (1987) Association of intermediate filaments with vinculin-containing adhesion plaques of fibroblasts. Cell Motil. Cytoskeleton. 8, 274–283.
  8. Ivaska J., Pallari H.M., Nevo J., Eriksson J.E. (2007) Novel functions of vimentin in cell adhesion, migration, and signaling. Exp. Cell Res. 313, 2050–2062.
  9. Tsuruta D., Jones J.C.R. (2003) The vimentin cytoskeleton regulates focal contact size and adhesion of endothelial cells subjected to shear stress. J. Cell Sci. 116, 4977–4984.
  10. Cattaruzza M., Lattrich C., Hecker M. (2004) Focal adhesion protein zyxin is a mechanosensitive modulator of gene expression in vascular smooth muscle cells. Hypertension. 43, 1–5.
  11. Burridge K., Guilluy C. (2016) Focal adhesions, stress fibers and mechanical tension. Exp. Cell Res. 343, 14–20.
  12. Seetharaman S., Etienne-Manneville S. (2019) Microtubules at focal adhesions – a double-edged sword. J. Cell Sci. 132, 1–11.
  13. Gonzales M., Weksler B., Tsuruta D., Goldman R.D., Yoon K.J., Hopkinson S.B., Flitney F.W., Jones J.C.R. (2001) Structure and function of a vimentin-associated matrix adhesion in endothelial cells. Mol. Biol. Cell. 12, 85–100.
  14. Bhattacharya R., Gonzalez A.M., DeBiase P.J., Trejo H.E., Goldman R.D., Flitney F.W., Jones J.C.R. (2009) Recruitment of vimentin to the cell surface by β3 integrin and plectin mediates adhesion strength. J. Cell Sci. 122, 1390–1400.
  15. Vohnoutka R.B., Gulvady A.C., Goreczny G., Alpha K., Handelman S.K., Sexton J.Z., Turner C.E. (2019) The focal adhesion scaffold protein Hic-5 regulates vimentin organization in fibroblasts. Mol. Biol. Cell. 30, 3037–3056.
  16. Burgstaller G., Gregor M., Winter L., Wiche G. (2010) Keeping the vimentin network under control: cell-matrix adhesion-associated plectin 1f affects cell shape and polarity of fibroblasts. Mol. Biol. Cell. 21, 3362–3375.
  17. Setou M., Seog D-H., Tanaka Y., Kanai Y., Takei Y., Kawagishi M., Hirokawa N. (2002) Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature. 417, 83–87.
  18. Li B., Trueb B. (2001) Analysis of the α-actinin/zyxin interaction. J. Biol. Chem. 276, 33328–33335.
  19. Coutts A.S., MacKenzie E., Griffith E., Black D.M. (2003) TES is a novel focal adhesion protein with a role in cell spreading. J. Cell Sci. 116, 897–906.
  20. Lv K., Chen L., Li Y., Li Z., Zheng P., Liu Y., Chen J., Teng J. (2015) Trip6 promotes dendritic morphogenesis through dephosphorylated GRIP1-dependent myosin VI and F-actin organization. J. Neurosci. 35, 2559–2571.
  21. Wyszynski M., Kim E., Dunah A.W., Passafaro M., Valtschanoff J.G., Serra-Pages C., Streuli M., Weinberg R.J., Sheng M. (2002) Interaction between GRIP and liprin-α/SYD2 is required for AMPA receptor targeting. Neuron. 34, 39–52.
  22. Takamiya K., Kostourou V., Adams S., Jadeja S., Chalepakis G., Scambler P.J., Huganir R.L., Adams R.H. (2004) A direct functional link between the multi-PDZ domain protein GRIP1 and the Fraser syndrome protein Fras1. Nat. Genet. 36, 172–177.
  23. Modjeski K.L., Ture S.K., Field D.J., Cameron S.J., Morrell C.N. (2016) Glutamate receptor interacting protein 1 mediates platelet adhesion and thrombus formation. PLoS One. 11, e0160638.
  24. Geiger J.C., Lipka J., Segura I., Hoyer S., Schlager M.A., Wulf P.S., Weinges S., Demmers J., Hoogenraad C.C., Acker-Palmer A. (2014) The GRIP1/14-3-3 pathway coordinates cargo trafficking and dendrite development. Dev. Cell. 28, 381–393.
  25. Charych E.I., Li R., Serwanski D.R., Li X., Miralles C.P., Pinal N., Blas A.L.D. (2006) Identification and characterization of two novel splice forms of GRIP1 in the rat brain. J. Neurochem. 97, 884–898.
  26. Yamazaki M., Fukay M., Abe M., Ikeno K., Kakizaki T., Watanabe M., Sakimura K. (2001) Differential palmitoylation of two mouse glutamate receptor interacting protein 1 forms with different N-terminal sequences. Neurosci. Lett. 304, 81–84.
  27. Hanley L.J., Henley J.M. (2010) Differential roles of GRIP1a and GRIP1b in AMPA receptor trafficking. Neurosci. Lett. 485, 167–172.
  28. DeSouza S., Fu J., States B.A., Ziff E.B. (2002) Differential palmitoylation directs the AMPA receptor-binding protein ABP to spines or to intracellular clusters. J. Neurosci. 22, 3493–3503.
  29. Dong H., O´Brien R.J., Fung E.T., Lanahan A.A., Worley P.F., Huganir R.L. (1997) GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature. 386, 279–284.
  30. Pfennig S., Foss F., Bissen D., Harde E., Treeck J.C., Segarra M., Acker-Palmer A. (2017) GRIP1 binds to ApoER2 and ephrinB2 to induce activity-dependent AMPA receptor insertion at the synapse. Cell Rep. 21, 84–96.
  31. Steiner P., Alberi S., Kulangara K., Yersin A., Sarria J.C.F., Regulier E., Kasas S., Dietler G., Muller D., Catsicas S., Hirling H. (2005) Interactions between NEEP21, GRIP1 and GluR2 regulate sorting and recycling of the glutamate receptor subunit GluR2. EMBO J. 24, 2873–2884.
  32. Zhang J., Wang Y., Chi Z., Keuss M.J., Pai Y-M.P., Kang H.C., Shin J., Bugayenko A., Wang H., Xiong Y., Pletnikov M.V., Mattson M.P., Dawson T.M., Dawson V.L. (2011) The AAA+ ATPase, Thorase regulates AMPA receptor-dependent synaptic plasticity and behavior. Cell. 145, 284–299.
  33. Ye B., Sugo N., Hurn P.D., Huganir R.L. (2002) Physiological and pathological caspase cleavage of the neuronal RASGEF GRASP-1 as detected using a cleavage site-specific antibody. Neuroscience. 114, 217–227.
  34. Davidkova G., Carroll R.C. (2007) Characterization of the role of microtubule-associated protein 1B in metabotropic glutamate receptor-mediated endocytosis of AMPA receptors in hippocampus. J. Neurosci. 27, 13273–13278.
  35. Mao L., Takamiya K., Thomas G., Lin D.T., Huganir R.L. (2010) GRIP1 and 2 regulate activity-dependent AMPA receptor recycling via exocyst complex interactions. Proc. Natl. Acad. Sci. USA. 107, 19038–19043.
  36. Stegmüller J., Werner H., Nave K.A., Trotter J. (2003) The proteoglycan NG2 is complexed with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by the PDZ Glutamate Receptor Interaction Protein (GRIP) in glial progenitor cells. Implications for glial-neuronal signaling. J. Biol. Chem. 278, 3590–3598.
  37. Heisler F.F., Lee H.K., Gromova K.V., Pechmann Y., Schurek B., Ruschkies L., Schroeder M., Schweizer M., Kneussel M. (2014) GRIP1 interlinks N-cadherin and AMPA receptors at vesicles to promote combined cargo transport into dendrites. Proc. Natl. Acad. Sci. USA. 111, 135030–135035.
  38. Wagner W., Lippmann K., Heisler F.F., Gromova K.V., Lombino F.L., Roesler M.K., Pechmann Y., Hornig S., Schweizer M., Polo S., Schwarz J.R., Eilers J., Kneussel M. (2019) Myosin VI drives clathrin-mediated AMPA receptor endocytosis to facilitate cerebellar long-term depression. Cell Rep. 28, 11–20.
  39. Xie X., Liang M., Yu C., Wei Z. (2021) Liprin-α-mediated assemblies and their roles in synapse formation. Front. Cell. Dev. Biol. 9, 653381.
  40. Astro V., Tonoli D., Chiaretti S., Badanai S., Sala K., Zerial M., de Curtis I. (2016) Liprin-α1 and ERC1 control cell edge dynamics by promoting focal adhesion turnover. Sci. Rep. 6, 33653.
  41. Pehkonen H., de Curtis I., Monni O. (2021) Liprins in oncogenic signaling and cancer cell adhesion. Oncogene. 40, 6406–6416.
  42. Lu X., Wyszynski M., Sheng M., Baudry M. (2007) Proteolysis of glutamate receptor-interacting protein by calpain in rat brain: implications for synaptic plasticity. J. Neurochem. 77, 1553–1560.
  43. Guo L., Wang Y. (2007) Glutamate stimulates glutamate receptor interacting protein 1 degradation by ubiquitin-proteasome system to regulate surface expression of GluR2. Neuroscience. 145, 100–109.
  44. Qi Y., Wang J.K.T., McMillian M., Chikaraishi D.M. (1997) Characterization of a CNS cell line, CAD, in which morphological differentiation is initiated by serum deprivation. J. Neurosci. 17, 1217–1225.
  45. Shea T.B., Flanagan L.A. (2001) Kinesin, dynein and neurofilament transport. Trends Neurosci. 24, 644–648.
  46. Hackney D.D., Stock M.F. (2000) Kinesin´s IAK tail domain inhibits initial microtubule-stimulated ADP release. Nat. Cell Biol. 2, 257–260.
  47. Yonekura H., Nomura A., Ozawa H., Tatsu Y., Yumoto N., Uyeda T.Q.P. (2006) Mechanism of tail-mediated inhibition of kinesin activities studied using synthetic peptides. Biochem. Biophys. Res. Commun. 343, 420–427.
  48. Bershadsky A., Chausovsky A., Becker E., Lyubimova A., Geiger B. (1996) Involvement of microtubules in the control of adhesion-dependent signal transduction. Curr. Biol. 6, 1279–1289.
  49. Kaverina I., Krylyshkina O., Small J.V. (1999) Microtubule targeting of substrate contacts promotes their relaxation and dissociation. J. Cell Biol. 146, 1033–1044.
  50. Wang D-Y., Melero C., Albaraky A., Atherton P., Jansen K.A., Dimitracopoulos A., Dajas-Bailador F., Reid A., Franze K., Ballestrem C. (2021) Vinculin is required for neuronal mechanosensing but not for axon outgrowth. Exp. Cell Res. 407, 112805–112811.
  51. Meredith J.E., Fazeli B., Schwartz M.A. (1993) The extracellular matrix as a cell survival factor. Mol. Biol. Cell. 4, 953–961.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Characterization of anti-GRIP1 antibodies using immunoblotting and immunofluorescence staining. a – Schematic diagram of the GRIP1 molecule structure. б – Result of immunoblotting of REF52 rat fibroblast homogenate with anti-GRIP1 antibodies. в – REF52 cells treated simultaneously with anti-GRIP1 and anti-vimentin antibodies. г – The same staining of REF52 cells pre-treated with colcemid until complete depolymerization of microtubules. Scale bar is 10 μm in all images.

下载 (406KB)
3. Fig. 2. Antibodies to GRIP1 do not interact with vimentin, but precipitate it from the cell extract. a – Two identical immunoblots with a homogenate of CAD cells treated in parallel with antibodies to GRIP1 and vimentin. б – GRIP1 was precipitated from the extract (1) of REF52 cells; the anti-GRIP1 precipitate (2) contained vimentin, in contrast to the control (3) obtained by incubating the same portion of the cell extract with pure agarose beads with bound protein A.

下载 (123KB)
4. Fig. 3. Dominant-negative inhibition of GRIP1 interaction with kinesin affects the entry of intermediate filaments (IF) into CAD cell neurites. a – Schematic representation of the position of GBD (GRIP1 Binding Domain) on the kinesin heavy chain. б – Effect of the presence of GBD on IF distribution in CAD cells. Cells in complete medium were transfected with a plasmid encoding GFP-GBD, GFP (as a control), or GFP-GBD-short and after 20–24 h were transferred to serum-free medium to induce process formation for the next 48 h. Cells were then fixed and subjected to immunofluorescence staining with anti-mouse vimentin 3c8 (б), anti-GRIP1 (в, images inverted for clarity), anti-α-tubulin DM1α (г), and anti-neurofilament protein NF-M N2912 (д). Scale bar is 10 μm in all images.

下载 (385KB)
5. Fig. 4. Knockout of the GRIP1 gene alters the adhesive properties of CAD cells but does not prevent the filling of processes with vimentin. a – Immunoblotting of control and GRIP1 knockout CAD cell homogenates with anti-GRIP1 antibodies. б – Comparison of immunofluorescence staining of control and GRIP1 knockout CAD cells with anti-GRIP1 antibodies. в – Phase-contrast image of control and GRIP1 knockout CAD cells in complete and serum-free medium. г – Immunofluorescence staining of control and GRIP1 knockout CAD cells incubated in serum-free medium with anti-vimentin antibodies. Panels б and г – scale bar 10 μm.

下载 (283KB)
6. Fig. 5. Knockout of the GRIP1 gene in EA.hy926 endothelial cells. a – Comparison of homogenates of EA.hy926 cells – control and with knockout of the GRIP1 protein gene, in immunoblotting with anti-GRIP1 antibodies. б – Comparison of EA.hy926 cells – control and with knockout of the GRIP1 protein gene – by double immunofluorescence staining with anti-GRIP1 antibodies and antibodies to vimentin.

下载 (129KB)
7. Fig. 6. GRIP1-depleted EA.hy926 endothelial cells lack FC and have altered HF locations. a – Phase-contrast image of EA.hy926 cells – control and with GRIP1 gene knockout. б – Distribution of vimentin (V9 antibody) in EA.hy926 cells – control and with GRIP1 gene knockout, on plain glass and glass coated with poly-L-lysine. в – Immunofluorescence staining of EA.hy926 cells (control and with GRIP1 gene knockout) with antibodies to vinculin, a FC marker. FC are indicated by arrows. Scale bars (б and в) are 10 μm, (a) – 50 μm.

下载 (589KB)
8. Fig. 7. GRIP1 and focal adhesions (FA) colocalize at the fibroblast periphery. Relative positions of filaments decorated with anti-GRIP1 antibodies (a) and FA (б) in REF52 fibroblast. FA are visualized by the expression of a plasmid encoding human zyxin fused with the fluorescent protein mKate. The last image (г) is an enlarged region highlighted in the merged image (в).

下载 (392KB)

版权所有 © Russian Academy of Sciences, 2024