Clinical and functional significance of extracellular microvesicles in the pathogenesis, diagnosis and treatment of sepsis
- Authors: Bashilov N.I.1, Zakrevsky Y.N.1,2, Arkhangelky D.A.1, Vysotsky Y.V.1, Mishanina L.A.2, Krivenko O.G.2
-
Affiliations:
- 11469th Naval Clinical Hospital of the Russian Defense Ministry
- Murmansk Arctic University of the Ministry of Education and Science of the Russian Federation
- Issue: Vol 345, No 6 (2024)
- Pages: 30-39
- Section: Treatment and prophylactic issues
- URL: https://journals.eco-vector.com/0026-9050/article/view/636135
- DOI: https://doi.org/10.52424/00269050_2024_345_6_30
- ID: 636135
Cite item
Abstract
Multicenter studies are being conducted around the world aimed at finding new, effective diagnostic markers and therapeutic approaches to the diagnosis and treatment of systemic inflammatory response and sepsis. One of the promising directions is the use of extracellular microvesicles a heterogeneous group of membrane particles involved in cellular signaling at various levels and involved in many physiological and pathological processes as markers for verifying diagnosis, monitoring therapeutic response, predicting the course and outcome of the septic process. The review presents current data describing the diagnostic and therapeutic value of quantitative and qualitative studies of microvesicles in the treatment of patients with sepsis of various etiologies. The authors showed the features of biogenesis, morphofunctional characteristics of microvesicles, the pleiotropy of the effects of extracellular microparticles in septic conditions, in the pathogenesis of sepsis, septic shock, the pro-inflammatory and anti-inflammatory potential of microvesicles of various cellular origins, the implementation of which depends, among other things, on the stimulus that caused the formation of microparticles and the conditions of their functioning, state of the donor cell. The main directions for pathogenetic treatment of sepsis and septic shock using microvesicles are presented.
Full Text

About the authors
N. I. Bashilov
11469th Naval Clinical Hospital of the Russian Defense Ministry
Author for correspondence.
Email: ufo_139@mil.ru
майор медицинской службы
Russian Federation, Severomorsk, Murmansk regionYu. N. Zakrevsky
11469th Naval Clinical Hospital of the Russian Defense Ministry; Murmansk Arctic University of the Ministry of Education and Science of the Russian Federation
Email: ufo_139@mil.ru
доктор медицинских наук, полковник медицинской службы запаса
Russian Federation, Severomorsk, Murmansk region; MurmanskD. A. Arkhangelky
11469th Naval Clinical Hospital of the Russian Defense Ministry
Email: ufo_139@mil.ru
кандидат медицинских наук, полковник медицинской службы
Russian Federation, Severomorsk, Murmansk regionY. V. Vysotsky
11469th Naval Clinical Hospital of the Russian Defense Ministry
Email: ufo_139@mil.ru
подполковник медицинской службы
Russian Federation, Severomorsk, Murmansk regionL. A. Mishanina
Murmansk Arctic University of the Ministry of Education and Science of the Russian Federation
Email: ufo_139@mil.ru
кандидат биологических наук
Russian Federation, MurmanskO. G. Krivenko
Murmansk Arctic University of the Ministry of Education and Science of the Russian Federation
Email: ufo_139@mil.ru
кандидат медицинских наук
Russian Federation, MurmanskReferences
- Бакшеева Е.Г., Цыбиков Н.Н. Диагностическая и прогностическая значимость микровезикул мочи // Урология. – 2018. – № 4. С. 170–171. DOI: https://dx.doi.org/10.18565/urology.2018.4.170-171
- Башилов Н.И., Цыбиков Н.Н. Роль микровезикул в транспорте факторов свертывания крови // Рос. физиологич. журн. – 2018. – Т. 104, № 2. – С. 129–137.
- Башилов Н.И., Цыбиков Н.Н., Кузник Б.И. Роль внеклеточных микровезикул в условиях нормы и патологии // Успехи соврем. биол. – 2017. – Т. 137, № 6. – С. 554–567.
- Золотов А. Н., Корпачева О. В., Пальянов С. В. и др. Биомаркёры сепсиса: патофизиология и диагностические возможности // Вестн. СурГУ. Медицина. – 2021. – Т. 47. – С. 59–66.
- Маркова К.Л., Коган И.Ю., Шевелева А.Р. и др. Микровезикулы лейкоцитарного происхождения // Вестн. РАМН. – 2018. – Т. 73, № 6. – С. 378–387.
- Савельев В.С., Гельфанд Б.Р. Сепсис: классификация, клинико-диагностическая концепция и лечение: Практ. рук-во. – М.: Мед. информ. агентство, 2013. – 360 с.
- Титов В.Н. Микрочастицы плазмы крови, микровезикулы, экзосомы, тельца апоптоза и макрофаги Купфера в печени – поздняя в филогенезе система реализации биологической функции эндоэкологии // Клин. лабор. диагност. – 2011. – № 11. – С. 29–39.
- Abbas M., Jesel L., Auger C. et al. Еndothelial microparticles from acute coronary syndrome patients induce premature coronary artery endothelial cell aging and thrombogenicity: role of the Ang II/AT1 receptor/NADPH oxidase-mediated аctivation of MAPKs and PI3-kinase рathways // Circulation. – 2017. – Vol. 135, N 3. – P. 280–296.
- Aharon An., Brenner B. Microvesicles in Thrombosis and Inflammation. // IMAJ. – 2016. – Vol. 18, N 9. – P. 530–533.
- Alchinova I., Khaspekova S., Golubeva N. et al. Comparison of the size of membrane microparticles of different cellular origin by dynamic light scattering // Doklady biochemistry and biophysics. – 2016. – Vol. 470, N 1. – P. 322–325.
- An N., Chen Z., Zhao P., Yin W. Extracellular Vesicles in Sepsis: Pathogenic Roles, Organ Damage, and Therapeutic Implications // Int. J. Med. Sci. – 2023. – Vol. 20, N 13. – P. 1722–1731. doi: 10.7150/ijms.86832
- Aras O., Shet A., Bach R. et al. Induction of microparticleand cell-associated intravascular tissue factor in human endotoxemia // Blood. – 2004. – Vol. 103, N 12. – P. 4545–4553.
- Chen H.P., Wang X.Y., Pan X.Y. et al. Circulating Neutrophil-Derived Microparticles Associated with the Prognosis of Patients with Sepsis // J. Inflamm Res. – 2020. – Vol. 13. – P. 1113–1124. doi.org/10.2147/JIR.S287256
- Dalli J., Montero-Melendez T., Norling L. et al. Heterogeneity in neutrophil microparticles reveals distinct proteome and functional properties // Molecul. and cellul. proteomics. – 2013. – Vol. 12, N 8. – P. 2205–2219.
- Dalli J., Norling L., Montero-Melendez T. et al. Microparticle alpha-2-macroglobulin enhances pro-resolving responses and promotes survival in sepsis // EMBO Molecul. medic. – 2014. – Vol. 6, N 1. – P. 27–42.
- Dalli J., Norling L., Renshaw D. et al. Annexin 1 mediates the rapid anti-inflammatory effects of neutrophil-derived microparticles // Blood. – 2008. – Vol. 112, N 6. – P. 2512–2519.
- Dhainaut J., Shorr A., Macias W. et al. Dynamic evolution of coagulopathy in the first day of severe sepsis: relationship with mortality and organ failure // Critical care medic. – 2005. – Vol. 33, N 2. – P. 341–348.
- Gaceb A., Vergori L., Martinez M., Andriantsitohaina R. Activation of endothelial pro-resolving anti-inflammatory pathways by circulating microvesicles from non-muscular myosin light chain kinase-deficient mice // Frontiers in Pharmacology. – 2016. – Vol. 322, N 7. – P. 1–11. doi: 10.3389/fphar.2016.00322
- Harel M., Oren-Giladi Р., Kaidar-Person О. et al. Quantification (PROMIS-Quan): a novel proteomic method for plasma biomarker quantification // Molecul. and cell. proteomics. – 2015. – Vol. 14, N 4. – P. 1127–1136.
- Hellum M., Troseid A., Berg J. et al. The Neisseria meningitidis lpxL1 mutant induces less tissue factor expression and activity in primary human monocytes and monocyte-derived microvesicles than the wild type meningococcus // Innate Immunity. – 2017. – Vol. 23, N 2. – P. 196–205.
- Islam A., Jones H., Hiroi T. et al. cAMP-dependent protein kinase A (PKA) signaling induces TNFR1 exosome-like vesicle release via anchoring of PKA regulatory subunit RIIbeta to BIG2 // J. of Biolog. Chemistry. – 2008. – Vol. 283, N 37. – P. 25364–25371.
- Johnson B., Kuethe J., Caldwell C. Neutrophil derived microvesicles: emerging role of a key mediator to the immune response // Endocrine, metabolic and immune disorders-drug targets. – 2014. – Vol. 14, N 3. – P. 210–217.
- Lim K., Sumagin R., Hyun Y. Extravasating neutrophil-derived microparticles preserve vascular barrier function in inflamed tissue // Immune network. – 2013. – Vol. 13, N 3. – P. 102–106.
- Liu Y., Zhang R., Qu H. et al. Endothelial microparticles activate endothelial cells to facilitate the inflammatory response // Molecular medic. reports. – 2017. – Vol. 15, N 3. – P. 1291–1296.
- Mackman N, Hisada Y. Therapeutic potential of granulocyte microvesicles in sepsis // Blood. – 2022. – Vol. 139, N 15. – P. 2269–2271. doi: 10.1182/blood.2021015280
- Mastronardi M., Mostefai H., Meziani F. et al. Circulating microparticles from septic shock patients exert differential tissue expression of enzymes related to inflammation and oxidative stress // Critical care medic. – 2011. – Vol. 39, N 7. – P. 1739–1748.
- Matthay M., Pati S., Lee J. Mesenchymal Stem (Stromal) Cells: Biology and Preclinical Evidence for Therapeutic Potential for Organ Dysfunction Following Trauma or Sepsis // Stem. Cells. – 2017. – Vol. 35, N 2. – P. 316–324.
- Midura E., Prakash P., Johnson B. et al. Impact of caspase-8 and PKA in regulating neutrophil-derived microparticle generation // Biochemical and biophysical research communications. – 2016. – Vol. 469, N 4. – P. 917–922.
- Morris D.C., Jaehne A.K., Chopp M. et al. Proteomic Profiles of Exosomes of Septic Patients Presenting to the Emergency Department Compared to Healthy Controls // J. of Clin. Medic. – 2020. – Vol. 9, N 9. – P. 2930. https://doi.org/10.3390/jcm9092930
- Mortaza S., Martinez M., Baron-Menguy C. et al. Detrimental hemodynamic and inflammatory effects of microparticles originating from septic rats // Critical care medic. – 2009. – Vol. 37, N 6. – P. 2045–2050.
- Mostefai H., Meziani F., Mastronardi M. et al. Circulating microparticles from patients with septic shock exert protective role in vascular function // Am. J. of respirat. and critical care medic. – 2008. – Vol. 178, N 11. – P. 1148–1155.
- Nieuwland R., Berckmans R., McGregor S. et al. Cellular origin and procoagulant properties of microparticles in meningococcal sepsis // Blood. – 2000. – Vol. 95, N 3. – P. 930–935.
- Nolan S., Dixon R., Norman K. et al. Nitric oxide regulates neutrophil migration through microparticle formation // Am. J. of pathology. – 2008. – Vol. 172, N 1. – P. 265–273.
- O’Dea K., Porter J., Tirlapur N. et al. Circulating Microvesicles Are Elevated Acutely following Major Burns Injury and Associated with Clinical Severity // PLoS One. – 2016. – Vol 11, N 12. doi: 10.1371/journal.pone.0167801
- Owens A., Mackman N. Microparticles in hemostasis and thrombosis // Circulation research. – 2011. – Vol. 108, N 10. – P. 1284–1297.
- Pliyev B., Kalintseva M., Abdulaeva S. et al. Neutrophil microparticles modulate cytokine production by natural killer cells // Cytokine. – 2014. – Vol. 65, N 2. – P. 126–129.
- Prakash P., Caldwell C., Lentsch A. et al. Нuman microparticles generated during sepsis in patients with critical illness are neutrophil-derived and modulate the immune response // J. of trauma and acute care surg. – 2012. – Vol. 73, N 2. – P. 401–406.
- Ratajczak M.Z., Ratajczak J. Extracellular microvesicles/exosomes: discovery, disbelief, acceptance, and the future? // Leukemia. – 2020. – Vol. 34. – Р. 3126–313. doi.org/10.1038/s41375-020-01041-z
- Reid V., Webster N. Role of microparticles in sepsis // Br. J. of anaesth. – 2012. – Vol. 109, N 4. – P. 503–513.
- Seventieth World Health Assembly 70.7. Improving the prevention, diagnosis and clinical management of sepsis. 29.05.2017. Available at: http://apps.who.int/gb/ebwha/pdf_files/WHA70/A70_R7-en.pdf
- Sibikova M., Zivny J., Janota J. Cell Membrane-Derived Microvesicles in Systemic Inflammatory Response. // Folia Biol. – 2018. – Vol. 64, N 4. – P. 113–124. doi: 10.14712/fb2018064040113
- Singer M., Deutschman C., Seymour C. et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3) // JAMA. – 2016. – Vol. 315, N 8. – P. 801–810.
- Soriano A., Jy W., Chirinos J. et al. Levels of endothelial and platelet microparticles and their interactions with leukocytes negatively correlate with organ dysfunction and predict mortality in severe sepsis // Crit. care medic. – 2005. – Vol. 33, N 11. – P. 2540–2546.
- Tian C., Wang K., Zhao M. et al. Extracellular vesicles participate in the pathogenesis of sepsis // Front. Cell. Infect. Microbiol. – 2022. – N 12. – P. 10186–10192. doi: 10.3389/fcimb.2022.1018692
- Timar C., Lorincz A., Csepanyi-Kцmi R. et al. Antibacterial effect of microvesicles released from human neutrophilic granulocytes // Blood. – 2013. – Vol. 121, N 3. – P. 510–518.
- Tseng C., Wang C., Hsiao C. et al. Time courses and value of circulating microparticles in patients with operable stage non-small cell lung cancer undergoing surgical intervention // Tumour biol. – 2016. – Vol. 73, N 9. – P. 11873–11882.
- Webber R.J., Sweet R.M., Webber D.S. Circulating Microvesicle-Associated Inducible Nitric Oxide Synthase Is a Novel Therapeutic Target to Treat Sepsis: Current Status and Future Considerations // Inter. J. of Molecul. Sci. – 2021. – Vol. 22 (24). – P. 133–171. doi.org/10.3390/ijms222413371
- Webber R.J., Sweet R.M., Webber D.S. Inducible Nitric Oxide Synthase in Circulating Microvesicles: Discovery, Evolution, and Evidence as a Novel Biomarker and the Probable Causative Agent for Sepsis // J. of Applied Laboratory Medic. – 2019. – N 4. – P. 698–711. doi.org/10.1373jalm.2018.026377
- Wen B., Combes V., Bonhoure A. et al. Endotoxin-induced monocytic microparticles have contrasting effects on endothelial inflammatory responses // PLoS One. – 2014. – Vol. 9, N 3. – P. 1–11. doi: 10.1371/journal.pone. 0091597
- Zheng D., Zhang J., Zhang Z. et al. Endothelial Microvesicles Induce Pulmonary Vascular Leakage and Lung Injury During Sepsis // Front. Cell. Dev. Biol. – 2000. – N 8. – P. 643. doi: 10.3389/fcell.2020.00643
Supplementary files
