Clinical and functional significance of extracellular microvesicles in the pathogenesis, diagnosis and treatment of sepsis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Multicenter studies are being conducted around the world aimed at finding new, effective diagnostic markers and therapeutic approaches to the diagnosis and treatment of systemic inflammatory response and sepsis. One of the promising directions is the use of extracellular microvesicles a heterogeneous group of membrane particles involved in cellular signaling at various levels and involved in many physiological and pathological processes as markers for verifying diagnosis, monitoring therapeutic response, predicting the course and outcome of the septic process. The review presents current data describing the diagnostic and therapeutic value of quantitative and qualitative studies of microvesicles in the treatment of patients with sepsis of various etiologies. The authors showed the features of biogenesis, morphofunctional characteristics of microvesicles, the pleiotropy of the effects of extracellular microparticles in septic conditions, in the pathogenesis of sepsis, septic shock, the pro-inflammatory and anti-inflammatory potential of microvesicles of various cellular origins, the implementation of which depends, among other things, on the stimulus that caused the formation of microparticles and the conditions of their functioning, state of the donor cell. The main directions for pathogenetic treatment of sepsis and septic shock using microvesicles are presented.

Full Text

Restricted Access

About the authors

N. I. Bashilov

11469th Naval Clinical Hospital of the Russian Defense Ministry

Author for correspondence.
Email: ufo_139@mil.ru

майор медицинской службы

Russian Federation, Severomorsk, Murmansk region

Yu. N. Zakrevsky

11469th Naval Clinical Hospital of the Russian Defense Ministry; Murmansk Arctic University of the Ministry of Education and Science of the Russian Federation

Email: ufo_139@mil.ru

доктор медицинских наук, полковник медицинской службы запаса

Russian Federation, Severomorsk, Murmansk region; Murmansk

D. A. Arkhangelky

11469th Naval Clinical Hospital of the Russian Defense Ministry

Email: ufo_139@mil.ru

кандидат медицинских наук, полковник медицинской службы

Russian Federation, Severomorsk, Murmansk region

Y. V. Vysotsky

11469th Naval Clinical Hospital of the Russian Defense Ministry

Email: ufo_139@mil.ru

подполковник медицинской службы

Russian Federation, Severomorsk, Murmansk region

L. A. Mishanina

Murmansk Arctic University of the Ministry of Education and Science of the Russian Federation

Email: ufo_139@mil.ru

кандидат биологических наук

Russian Federation, Murmansk

O. G. Krivenko

Murmansk Arctic University of the Ministry of Education and Science of the Russian Federation

Email: ufo_139@mil.ru

кандидат медицинских наук

Russian Federation, Murmansk

References

  1. Бакшеева Е.Г., Цыбиков Н.Н. Диагностическая и прогностическая значимость микровезикул мочи // Урология. – 2018. – № 4. С. 170–171. DOI: https://dx.doi.org/10.18565/urology.2018.4.170-171
  2. Башилов Н.И., Цыбиков Н.Н. Роль микровезикул в транспорте факторов свертывания крови // Рос. физиологич. журн. – 2018. – Т. 104, № 2. – С. 129–137.
  3. Башилов Н.И., Цыбиков Н.Н., Кузник Б.И. Роль внеклеточных микровезикул в условиях нормы и патологии // Успехи соврем. биол. – 2017. – Т. 137, № 6. – С. 554–567.
  4. Золотов А. Н., Корпачева О. В., Пальянов С. В. и др. Биомаркёры сепсиса: патофизиология и диагностические возможности // Вестн. СурГУ. Медицина. – 2021. – Т. 47. – С. 59–66.
  5. Маркова К.Л., Коган И.Ю., Шевелева А.Р. и др. Микровезикулы лейкоцитарного происхождения // Вестн. РАМН. – 2018. – Т. 73, № 6. – С. 378–387.
  6. Савельев В.С., Гельфанд Б.Р. Сепсис: классификация, клинико-диагностическая концепция и лечение: Практ. рук-во. – М.: Мед. информ. агентство, 2013. – 360 с.
  7. Титов В.Н. Микрочастицы плазмы крови, микровезикулы, экзосомы, тельца апоптоза и макрофаги Купфера в печени – поздняя в филогенезе система реализации биологической функции эндоэкологии // Клин. лабор. диагност. – 2011. – № 11. – С. 29–39.
  8. Abbas M., Jesel L., Auger C. et al. Еndothelial microparticles from acute coronary syndrome patients induce premature coronary artery endothelial cell aging and thrombogenicity: role of the Ang II/AT1 receptor/NADPH oxidase-mediated аctivation of MAPKs and PI3-kinase рathways // Circulation. – 2017. – Vol. 135, N 3. – P. 280–296.
  9. Aharon An., Brenner B. Microvesicles in Thrombosis and Inflammation. // IMAJ. – 2016. – Vol. 18, N 9. – P. 530–533.
  10. Alchinova I., Khaspekova S., Golubeva N. et al. Comparison of the size of membrane microparticles of different cellular origin by dynamic light scattering // Doklady biochemistry and biophysics. – 2016. – Vol. 470, N 1. – P. 322–325.
  11. An N., Chen Z., Zhao P., Yin W. Extracellular Vesicles in Sepsis: Pathogenic Roles, Organ Damage, and Therapeutic Implications // Int. J. Med. Sci. – 2023. – Vol. 20, N 13. – P. 1722–1731. doi: 10.7150/ijms.86832
  12. Aras O., Shet A., Bach R. et al. Induction of microparticleand cell-associated intravascular tissue factor in human endotoxemia // Blood. – 2004. – Vol. 103, N 12. – P. 4545–4553.
  13. Chen H.P., Wang X.Y., Pan X.Y. et al. Circulating Neutrophil-Derived Microparticles Associated with the Prognosis of Patients with Sepsis // J. Inflamm Res. – 2020. – Vol. 13. – P. 1113–1124. doi.org/10.2147/JIR.S287256
  14. Dalli J., Montero-Melendez T., Norling L. et al. Heterogeneity in neutrophil microparticles reveals distinct proteome and functional properties // Molecul. and cellul. proteomics. – 2013. – Vol. 12, N 8. – P. 2205–2219.
  15. Dalli J., Norling L., Montero-Melendez T. et al. Microparticle alpha-2-macroglobulin enhances pro-resolving responses and promotes survival in sepsis // EMBO Molecul. medic. – 2014. – Vol. 6, N 1. – P. 27–42.
  16. Dalli J., Norling L., Renshaw D. et al. Annexin 1 mediates the rapid anti-inflammatory effects of neutrophil-derived microparticles // Blood. – 2008. – Vol. 112, N 6. – P. 2512–2519.
  17. Dhainaut J., Shorr A., Macias W. et al. Dynamic evolution of coagulopathy in the first day of severe sepsis: relationship with mortality and organ failure // Critical care medic. – 2005. – Vol. 33, N 2. – P. 341–348.
  18. Gaceb A., Vergori L., Martinez M., Andriantsitohaina R. Activation of endothelial pro-resolving anti-inflammatory pathways by circulating microvesicles from non-muscular myosin light chain kinase-deficient mice // Frontiers in Pharmacology. – 2016. – Vol. 322, N 7. – P. 1–11. doi: 10.3389/fphar.2016.00322
  19. Harel M., Oren-Giladi Р., Kaidar-Person О. et al. Quantification (PROMIS-Quan): a novel proteomic method for plasma biomarker quantification // Molecul. and cell. proteomics. – 2015. – Vol. 14, N 4. – P. 1127–1136.
  20. Hellum M., Troseid A., Berg J. et al. The Neisseria meningitidis lpxL1 mutant induces less tissue factor expression and activity in primary human monocytes and monocyte-derived microvesicles than the wild type meningococcus // Innate Immunity. – 2017. – Vol. 23, N 2. – P. 196–205.
  21. Islam A., Jones H., Hiroi T. et al. cAMP-dependent protein kinase A (PKA) signaling induces TNFR1 exosome-like vesicle release via anchoring of PKA regulatory subunit RIIbeta to BIG2 // J. of Biolog. Chemistry. – 2008. – Vol. 283, N 37. – P. 25364–25371.
  22. Johnson B., Kuethe J., Caldwell C. Neutrophil derived microvesicles: emerging role of a key mediator to the immune response // Endocrine, metabolic and immune disorders-drug targets. – 2014. – Vol. 14, N 3. – P. 210–217.
  23. Lim K., Sumagin R., Hyun Y. Extravasating neutrophil-derived microparticles preserve vascular barrier function in inflamed tissue // Immune network. – 2013. – Vol. 13, N 3. – P. 102–106.
  24. Liu Y., Zhang R., Qu H. et al. Endothelial microparticles activate endothelial cells to facilitate the inflammatory response // Molecular medic. reports. – 2017. – Vol. 15, N 3. – P. 1291–1296.
  25. Mackman N, Hisada Y. Therapeutic potential of granulocyte microvesicles in sepsis // Blood. – 2022. – Vol. 139, N 15. – P. 2269–2271. doi: 10.1182/blood.2021015280
  26. Mastronardi M., Mostefai H., Meziani F. et al. Circulating microparticles from septic shock patients exert differential tissue expression of enzymes related to inflammation and oxidative stress // Critical care medic. – 2011. – Vol. 39, N 7. – P. 1739–1748.
  27. Matthay M., Pati S., Lee J. Mesenchymal Stem (Stromal) Cells: Biology and Preclinical Evidence for Therapeutic Potential for Organ Dysfunction Following Trauma or Sepsis // Stem. Cells. – 2017. – Vol. 35, N 2. – P. 316–324.
  28. Midura E., Prakash P., Johnson B. et al. Impact of caspase-8 and PKA in regulating neutrophil-derived microparticle generation // Biochemical and biophysical research communications. – 2016. – Vol. 469, N 4. – P. 917–922.
  29. Morris D.C., Jaehne A.K., Chopp M. et al. Proteomic Profiles of Exosomes of Septic Patients Presenting to the Emergency Department Compared to Healthy Controls // J. of Clin. Medic. – 2020. – Vol. 9, N 9. – P. 2930. https://doi.org/10.3390/jcm9092930
  30. Mortaza S., Martinez M., Baron-Menguy C. et al. Detrimental hemodynamic and inflammatory effects of microparticles originating from septic rats // Critical care medic. – 2009. – Vol. 37, N 6. – P. 2045–2050.
  31. Mostefai H., Meziani F., Mastronardi M. et al. Circulating microparticles from patients with septic shock exert protective role in vascular function // Am. J. of respirat. and critical care medic. – 2008. – Vol. 178, N 11. – P. 1148–1155.
  32. Nieuwland R., Berckmans R., McGregor S. et al. Cellular origin and procoagulant properties of microparticles in meningococcal sepsis // Blood. – 2000. – Vol. 95, N 3. – P. 930–935.
  33. Nolan S., Dixon R., Norman K. et al. Nitric oxide regulates neutrophil migration through microparticle formation // Am. J. of pathology. – 2008. – Vol. 172, N 1. – P. 265–273.
  34. O’Dea K., Porter J., Tirlapur N. et al. Circulating Microvesicles Are Elevated Acutely following Major Burns Injury and Associated with Clinical Severity // PLoS One. – 2016. – Vol 11, N 12. doi: 10.1371/journal.pone.0167801
  35. Owens A., Mackman N. Microparticles in hemostasis and thrombosis // Circulation research. – 2011. – Vol. 108, N 10. – P. 1284–1297.
  36. Pliyev B., Kalintseva M., Abdulaeva S. et al. Neutrophil microparticles modulate cytokine production by natural killer cells // Cytokine. – 2014. – Vol. 65, N 2. – P. 126–129.
  37. Prakash P., Caldwell C., Lentsch A. et al. Нuman microparticles generated during sepsis in patients with critical illness are neutrophil-derived and modulate the immune response // J. of trauma and acute care surg. – 2012. – Vol. 73, N 2. – P. 401–406.
  38. Ratajczak M.Z., Ratajczak J. Extracellular microvesicles/exosomes: discovery, disbelief, acceptance, and the future? // Leukemia. – 2020. – Vol. 34. – Р. 3126–313. doi.org/10.1038/s41375-020-01041-z
  39. Reid V., Webster N. Role of microparticles in sepsis // Br. J. of anaesth. – 2012. – Vol. 109, N 4. – P. 503–513.
  40. Seventieth World Health Assembly 70.7. Improving the prevention, diagnosis and clinical management of sepsis. 29.05.2017. Available at: http://apps.who.int/gb/ebwha/pdf_files/WHA70/A70_R7-en.pdf
  41. Sibikova M., Zivny J., Janota J. Cell Membrane-Derived Microvesicles in Systemic Inflammatory Response. // Folia Biol. – 2018. – Vol. 64, N 4. – P. 113–124. doi: 10.14712/fb2018064040113
  42. Singer M., Deutschman C., Seymour C. et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3) // JAMA. – 2016. – Vol. 315, N 8. – P. 801–810.
  43. Soriano A., Jy W., Chirinos J. et al. Levels of endothelial and platelet microparticles and their interactions with leukocytes negatively correlate with organ dysfunction and predict mortality in severe sepsis // Crit. care medic. – 2005. – Vol. 33, N 11. – P. 2540–2546.
  44. Tian C., Wang K., Zhao M. et al. Extracellular vesicles participate in the pathogenesis of sepsis // Front. Cell. Infect. Microbiol. – 2022. – N 12. – P. 10186–10192. doi: 10.3389/fcimb.2022.1018692
  45. Timar C., Lorincz A., Csepanyi-Kцmi R. et al. Antibacterial effect of microvesicles released from human neutrophilic granulocytes // Blood. – 2013. – Vol. 121, N 3. – P. 510–518.
  46. Tseng C., Wang C., Hsiao C. et al. Time courses and value of circulating microparticles in patients with operable stage non-small cell lung cancer undergoing surgical intervention // Tumour biol. – 2016. – Vol. 73, N 9. – P. 11873–11882.
  47. Webber R.J., Sweet R.M., Webber D.S. Circulating Microvesicle-Associated Inducible Nitric Oxide Synthase Is a Novel Therapeutic Target to Treat Sepsis: Current Status and Future Considerations // Inter. J. of Molecul. Sci. – 2021. – Vol. 22 (24). – P. 133–171. doi.org/10.3390/ijms222413371
  48. Webber R.J., Sweet R.M., Webber D.S. Inducible Nitric Oxide Synthase in Circulating Microvesicles: Discovery, Evolution, and Evidence as a Novel Biomarker and the Probable Causative Agent for Sepsis // J. of Applied Laboratory Medic. – 2019. – N 4. – P. 698–711. doi.org/10.1373jalm.2018.026377
  49. Wen B., Combes V., Bonhoure A. et al. Endotoxin-induced monocytic microparticles have contrasting effects on endothelial inflammatory responses // PLoS One. – 2014. – Vol. 9, N 3. – P. 1–11. doi: 10.1371/journal.pone. 0091597
  50. Zheng D., Zhang J., Zhang Z. et al. Endothelial Microvesicles Induce Pulmonary Vascular Leakage and Lung Injury During Sepsis // Front. Cell. Dev. Biol. – 2000. – N 8. – P. 643. doi: 10.3389/fcell.2020.00643

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bashilov N.I., Zakrevsky Y.N., Arkhangelky D.A., Vysotsky Y.V., Mishanina L.A., Krivenko O.G.



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 01975 от 30.12.1992.