Sintez prostykh metilovykh efirov glitserina v reaktore s nepodvizhnym sloem tseolitnogo katalizatora

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Работа посвящена исследованию закономерностей синтеза простых метиловых эфиров глицерина (МЭГ) в реакции прямой межмолекулярной дегидратации, протекающей между глицерином (ГЛ) и метанолом в присутствии цеолита типа BEA. Варьируемые условия реакции: температура (140, 160 и 180°С), давление (3.0, 5.0 и 7.0 МПа), объемная скорость подачи сырья (0.5 и 1.0 ч-1), мольное соотношение метанол : глицерин (5 : 1; 10 : 1). Описаны составы получаемых реакционных смесей, дана характеристика изомерного состава получаемых моно- и дизамещенных эфиров глицерина. Приведены материальные балансы реакции применительно для каждой комбинации рабочих параметров, показан характер изменения конверсии глицерина, выходов эфиров глицерина и побочного диметилового эфира (ДМЭ), а также селективности между моно- и дизамещенными эфирами глицерина в зависимости от условий реакции.

About the authors

V. O. Samoylov

Институт нефтехимического синтеза им. А.В. Топчиева РАН

Yu. I. Porukova

Институт нефтехимического синтеза им. А.В. Топчиева РАН

Email: porukova@ips.ac.ru

A. A. Kozhevnikov

Институт нефтехимического синтеза им. А.В. Топчиева РАН

V. A. Lavrent'ev

Институт нефтехимического синтеза им. А.В. Топчиева РАН

A. A. Porsin

Институт нефтехимического синтеза им. А.В. Топчиева РАН

M. I. Knyazeva

Институт нефтехимического синтеза им. А.В. Топчиева РАН

References

  1. Demirbaş A. Production of biodiesel from algae oils // Energy Sources. Part A: Recovery, Utilization, and Environmental Effects. 2008. V. 31. P. 163-168. https://doi.org/10.1080/15567030701521775
  2. Sakdasri W., Ngamprasertsith S., Saengsuk P., Sawangkeaw R. Supercritical reaction between methanol and glycerol: the effects of reaction products on biodiesel properties // Energy Conversion and Management: X. 2021. V. 12. 100145. https://doi.org/10.1016/J.ECMX.2021.100145
  3. Pinto B.P., De Lyra J.T., Nascimento J.A.C., Mota C.J.A. Ethers of glycerol and ethanol as bioadditives for biodiesel // Fuel. 2016. V. 168. P. 76-80. https://doi.org/10.1016/j.fuel.2015.11.052
  4. Samoilov V.O., Borisov R.S., Stolonogova T.I., Zarezin D.P., Maximov A.L., Bermeshev M.V., Chernysheva E.A., Kapustin V.M. Glycerol to renewable fuel oxygenates. Part II: Gasoline-blending characteristics of glycerol and glycol derivatives with C3-C4 alkyl(idene) substituents // Fuel. 2020. V. 280. 118585. https://doi.org/10.1016/j.fuel.2020.118585
  5. Saengarun C., Petsom A., Tungasmita D.N. Etherification of glycerol with propylene or 1-butene for fuel additives // Scientific World J.. 2017. V. 2017. ID 4089036. https://doi.org/10.1155/2017/4089036
  6. Melero J.A., Vicente G., Morales G., Paniagua M., Bustamante J. Oxygenated compounds derived from glycerol for biodiesel formulation: influence on EN 14214 quality parameters // Fuel. 2010. V. 89. P. 2011-2018. https://doi.org/10.1016/j.fuel.2010.03.042
  7. Bozkurt Ö.D., Yılmaz F., Bağlar N., Çelebi S., Uzun A. Compatibility of di- and tri-tert-butyl glycerol ethers with gasoline // Fuel. 2019. V. 255. ID 115767. https://doi.org/10.1016/j.fuel.2019.115767
  8. Самойлов В.О., Столоногова Т.И., Рамазанов Д.Н., Тюрина Е.В., Лаврентьев В.А., Порукова Ю.И., Чернышева Е.А., Капустин В.М.,. Трет-бутиловые эфиры возобновляемых диолов как оксигенатные добавки к автомобильным бензинам // Нефтехимия. 2023. Т. 63. № 2. С. 220-230. https://doi.org/10.31857/S0028242123020065.
  9. Samoilov V.O., Stolonogova T.I., Ramazanov D.N., Tyurina E.V., Lavrent'ev V.A., Porukova Y.I., Chernysheva E.A., Kapustin V.M. tert-Butyl ethers of renewable diols as oxygenated additives for motor gasoline. Part I: Glycerol and propylene glycol ethers // Petrol. Chemistry. 2023. P. 428-436. https://doi.org/10.1134/S0965544123010061
  10. Ikizer B., Oktar N., Dogu T. Etherification of glycerol with C4 and C5 reactive olefins // Fuel Processing Technology. 2015. V. 138. P. 570-577. https://doi.org/10.1016/j.fuproc.2015.06.039
  11. Garcia J.I., Garcia-Marín H., Pires E. Glycerol based solvents: synthesis, properties and applications // Green Chemistry. 2014. V. 16. P. 1007-1033. https://doi.org/10.1039/c3gc41857j
  12. Leal-Duaso A., Pérez P., Mayoral J.A., Garciá J.I., Pires E. Glycerol-derived solvents: synthesis and properties of symmetric glyceryl diethers // ACS Sustain. Chem. Eng. 2019. V. 7. P. 13004-13014. https://doi.org/10.1021/acssuschemeng.9b02105
  13. Leal-Duaso A., Pérez P., Mayoral J.A., Pires E., García J.I. Glycerol as a source of designer solvents: physicochemical properties of low melting mixtures containing glycerol ethers and ammonium salts // Physical Chemistry Chemical Physics. 2017. V. 19. P. 28302-28312. https://doi.org/10.1039/c7cp04987k
  14. Koshchii S.V. Optimization of synthesis of mono-O-methylglycerol isomers // Russian J. of Applied Chemistry. 2002. V. 75. P. 1434-1437. https://doi.org/10.1023/A:1022224828164
  15. Garcia J.I., Pires E., Aldea L., Lomba L., Perales E., Giner B. Ecotoxicity studies of glycerol ethers in Vibrio fischeri: checking the environmental impact of glycerol-derived solvents // Green Chemistry. 2015. V. 17. P. 4326-4333. https://doi.org/10.1039/C5GC00857C
  16. Moity L., Molinier V., Benazzouz A., Joossen B., Gerbaud V., Aubry J.M. A "top-down" in silico approach for designing ad hoc bio-based solvents: application to glycerol-derived solvents of nitrocellulose // Green Chemistry. 2016. V. 18. P. 3239-3249. https://doi.org/10.1039/c6gc00112b
  17. Moity L., Shi Y., Molinier V., Dayoub W., Lemaire M., Aubry J.M. Hydrotropic properties of alkyl and aryl glycerol monoethers // J. of Physical Chemistry B. 2013. V. 117. P. 9262-9272. https://doi.org/10.1021/jp403347u
  18. Leal-Duaso A., Mayoral J.A., Pires E. Steps forward toward the substitution of conventional solvents in the Heck-Mizoroki coupling reaction: glycerol-derived ethers and deep eutectic solvents as reaction media // ACS Sustain. Chem. Eng. 2020. V. 8. P. 13076-13084. https://doi.org/10.1021/acssuschemeng.0c04862
  19. Sutter M., Dayoub W., Metay E., Raoul Y., Lemaire M. 1,2,3-Trimethoxypropane and glycerol ethers as bio-sourced solvents from glycerol: synthesis by solvent-free phase-transfer catalysis and utilization as an alternative solvent in chemical transformations // ChemCatChem. 2013. V. 5. P. 2893-2904. https://doi.org/10.1002/cctc.201300458
  20. Qian S., Liu X., Emel'yanenko V.N., Sikorski P., Kammakakam I., Flowers B.S., Jones T.A., Turner C.H., Verevkin S.P., Bara J.E. Synthesis and properties of 1,2,3-triethoxypropane: a glycerol-derived green solvent candidate // Ind. Eng. Chem. Res. 2020. V. 59. P. 20190-20200. https://doi.org/10.1021/acs.iecr.0C03789
  21. Jia G., Zhang Y., Liu L., Li Y., Lv B. Gas-phase catalytic dehydration of glycerol with methanol to methyl glyceryl ethers over phosphotungstic acid supported on alumina // ACS Omega. 2021. V. 6. P. 29370-29379. https://doi.org/10.1021/acsomega.1C02891
  22. Bruniaux S., Varma R.S., Len C. A novel strategy for selective O-methylation of glycerol in subcritical methanol // Front. Chem. 2019. V. 7. P. 357. https://doi.org/10.3389/fchem.2019.00357
  23. Ikura M. Conversion of glycerol to naphtha-range oxygenates // Patent US № 2010/0016641. 2010.
  24. Samoilov V.O., Maximov A.L., Stolonogova T.I., Chernysheva E.A., Kapustin V.M., Karpunina A.O. Glycerol to renewable fuel oxygenates. Part I: Comparison between solketal and its methyl ether // Fuel. 2019. V. 249. P. 486-495. https://doi.org/10.1016/j.fuel.2019.02.098
  25. Chang J.S., Da Lee Y., Chou L.C.S., Ling T.R., Chou T.C. Methylation of glycerol with dimethyl sulfate to produce a new oxygenate additive for diesels // Ind. Eng. Chem. Res. 2012. V. 51. P. 655-661. https://doi.org/10.1021/ie201612t
  26. Gooden P.N., Bourne R.A., Parrott A.J., Bevinakatti H.S., Irvine D.J., Poliakoff M. Continuous acid-catalyzed methylations in supercritical carbon dioxide: comparison of methanol dimethyl ether and dimethyl carbonate as methylating agents // Org. Process. Res. Dev. 2010. V. 14. P. 411-416. https://doi.org/10.1021/op900307w

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences