A Kinetic Model and Mechanism for Liquid-Phase Heterogeneous Hydrogenation of Dicyclopentadiene

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The study investigates the main routes of liquid-phase hydrogenation of endo-tricyclo[5.2.1.02,6]deca-3,8-diene (dicyclopentadiene, (1)) in the presence of a PK-25 palladium catalyst (Pd/γ-Al2O3, 0.25% Pd). All the reaction products were identified, and the material balance was examined. Mild conditions were chosen for the hydrogenation of (1) to ensure that the norbornane framework was retained. For (1), like for other norbornene derivatives, the effect of prevalent adsorption of a norbornene double bond on an active site (AS) of palladium was confirmed, in contrast to other types of double bonds. Based on a combination of experimental and theoretical data, a consistent mechanism was proposed for the process, in which endo-tricyclo[5.2.1.02,6]decane (3) is obtained as the only final product. The kinetic order with respect to (1) was found to be zero within a wide range of its initial concentrations; the hydrogenation of the intermediate cycloalkene—endo-tricyclo[5.2.1.02,6]deca-3-ene (2)—was shown to have the first kinetic order. The activation parameters of the liquid-phase hydrogenation of both (1) and (2) were further determined. Based on the Langmuir–Hinshelwood approach and the concept of multiple adsorption of substrates on a single AS, an adequate kinetic model of the process was developed. It was shown that three process steps occurring by two routes significantly contributed to the reaction rate. The rate constants of these reaction steps and the adsorption constants of AS complexes with unsaturated compounds were estimated.

作者简介

V. Zamalyutin

Lomonosov Institute of Fine Chemical Technologies, MIREA – Russian Technological University

Email: zamalyutin@mail.ru
119571, Moscow, Russia

E. Katsman

Lomonosov Institute of Fine Chemical Technologies, MIREA – Russian Technological University

Email: petrochem@ips.ac.ru
119571, Moscow, Russia

O. Tkachenko

Lomonosov Institute of Fine Chemical Technologies, MIREA – Russian Technological University

Email: petrochem@ips.ac.ru
119571, Moscow, Russia

V. Flid

Lomonosov Institute of Fine Chemical Technologies, MIREA – Russian Technological University

编辑信件的主要联系方式.
Email: vitaly-flid@yandex.ru
119571, Moscow, Russia

参考

  1. Ушаков Н.В. Селективное гидрирование дициклопентадиена // Журн. прикл. химии. 2020. Т. 93. С. 155-163. https://doi.org/10.31857/S0044461820020012
  2. Ushakov N.V. Selective hydrogenation of dicyclopentadiene // Russ. J. Appl. Chem. 2020. V. 93. P. 159-166. https://doi.org/10.1134/s1070427220020019.
  3. Флид В.Р., Грингольц М.Л., Шамсиев Р.С., Финкельштейн Е.Ш. Норборнен, норборнадиен и их производные - перспективные полупродукты для органического синтеза и получения полимерных материалов // Усп. хим. 2018. Т. 87. С. 1169-1205. https://doi.org/10.1070/RCR4834
  4. Flid V.R., Gringolts M.L., Shamsiev R.S., Finkelshtein E.Sh. Norbornene, norbornadiene and their derivatives: promising semi-products for organic synthesis and production of polymeric materials // Russ. Chem. Rev. 2018. V. 87. P. 1169-1205. https://doi.org/10.1070/RCR4834.
  5. Jamróz M.E., Gałka S., Dobrowolski J.C. On dicyclopentadiene isomers // J. Mol. Struct. (Theochem). 2003. V. 634. P. 225-233. https://doi.org/10.1016/S0166-1280(03)00348-8
  6. Keenan M.J. (Eds.). Kirk-Othmer Encyclopedia of chemical technology. Wiley & Sons. Inc. Hoboken: New York, 1993. V. 7. P. 859-876.
  7. Flammersheim H.J., Opfermann J. The dimerization of cyclopentadiene - a test reaction for the kinetic analysis of DSC measurements and the performance of a kinetic evaluation program // Thermochim. Acta. 1999. V. 337. P. 149-153. https://doi.org/10.1016/S0040-6031(99)00163-X
  8. Woodward R.B., Hoffmann R. The conversion of orbital symmetry // Angew. Chem. Int. Ed. 1969. V. 8. P. 781-853. https://doi.org/10.1002/anie.196907811
  9. Hammond G.S., Turro N.J., Liu R.S.H. Mechanisms of photochemical reactions in solution XVI. Photosensitized dimerization of conjugated dienes // J. Org. Chem. 1963. V. 28. P. 3297-3303. https://doi.org/10.1021/Jo01047A005
  10. Turro N.J., Hammond G.S. The photosensitited dimerization of cyclopentadiene // J. Am. Chem. Soc. 1962. V. 84. P. 2841-2842. https://doi.org/10.1021/Ja00873A050
  11. Kovačič S., Slugovc C. Ring-opening metathesis polymerisation derived poly (dicyclopentadiene) based materials // Mater. Chem. Front. 2020. V. 4. № 8. Р. 2235-2255. https://doi.org/10.1039/D0QM00296H
  12. Leguizamon S.C., Cook A.W., Appelhans L.N. Employing Photosensitizers for rapid olefin metathesis additive manufacturing of poly(dicyclopentadiene) // Chem. Mater. 2021. V. 33. № 24. P. 9677-9689. https://doi.org/10.1021/acs.chemmater.1c03298
  13. Mann M., Zhang B., Tonkin S.J., Gibson C.Т., Jia Z., Hasell T., Chalker J.M. Processes for coating surfaces with a copolymer made from sulfur and dicyclopentadiene // Polym. Chem. 2022. V. 13. P. 1320-1327. https://doi.org/10.33774/chemrxiv-2021-n91h4
  14. Keenan M.J. (Eds.). Kirk-Othmer Encyclopedia of chemical technology. Wiley & Sons. Inc. Hoboken: New York, 2001. V. 24. P. 540.
  15. Worzakowska M. Novel DCPD-modified polyester containing epoxy groups: thermal, viscoelastic, and mechanical properties of their wood flour filled copolymers // Polym. Bull. 2012. V. 68. P. 775-787. https://doi.org/10.1007/s00289-011-0585-x
  16. Khan A., Ali S.S., Chodimella V.P., Farooqui S.A., Anand M., Sinha A.K. Catalytic conversion of dicyclopentadiene into high energy density fuel: a brief review // Ind. Eng. Chem. Res. 2021. V. 60. P. 1977-1988. https://doi.org/10.1021/acs.iecr.0c06168
  17. Zhang Z., Liu R., Li W., Liu Y., Pei Z., Qiu J., Wang S. Frontal polymerization-assisted 3D printing of short carbon fibers/dicyclopentadiene composites // J. Manuf. Process. 2021. V. 71. P. 753-762. https://doi.org/10.1016/j.jmapro.2021.10.014
  18. Behr A., Manz V., Lux A., Ernst A. Highly Selective Mono-hydrogenation of dicyclopentadiene with Pd-nanoparticles // Catal. Lett. 2013. V. 143. № 3. P. 241-245. https://doi.org/10.1007/s10562-013-0960-3
  19. Skála D., Hanika J. Dicyclopentadiene hydrogenation in trickle-bed reactor under forced periodic control // Chem. Papers. 2008. V. 62. № 2. P. 215-218. https://doi.org/10.2478/s11696-008-0013-3
  20. Hao M., Yang B., Wang H., Liu G., Qi S. Kinetics of liquid phase catalytic hydrogenation of dicyclopentadiene over Pd/C catalyst // J. Phys. Chem. A. 2010. V. 114. № 11. P. 3811-3817. https://doi.org/10.1021/jp9060363
  21. Верещагина Н.В., Антонова Т.Н., Копушкина Г.Ю., Абрамов И.Г. Кинетика насыщения и относительная реакционная способность двойных связей алициклических диенов в процессе гидрирования // Кинетика и катализ. 2017. Т. 58. № 3. С. 266-273. https://doi.org/10.7868/S0453881117030133
  22. Vereshchagina N.V., Antonova T.N., Kopushkina G.Yu., Abramov I.G. // Kin. Cat. 2017. V. 58. P. 255-261. https://doi.org/10.1134/S0023158417030120.
  23. Бермешев М.В., Антонова Т.Н., Шангареев Д.Р., Данилова А.С., Пожарская Н.А. Селективное каталитическое гидрирование алициклических диенов водородом в жидкой фазе // Нефтехимия. 2018. V. 58. C. 580-587
  24. Bermeshev M.V., Antonova T.N., Shangareev D.R., Danilova A.S., Pozharskaya N.A. // Petrol. Chemistry. 2018. V. 58. P. 869-875. https://doi.org/10.1134/S0028242118050039.
  25. Chung S.H., Park G.H., Schukkink N., Lee H., Shiju N.R. Structure-sensitive epoxidation of dicyclopentadiene over TiO2 catalysts // Chem. Commun. 2023. V. 59. P. 756-759. https://doi.org/10.1039/D2CC05305E
  26. Антонова Т.Н., Абрамов И.А., Фельдблюм В.Ш., Абрамов И.Г., Данилова А.С. Каталитическое гидрирование дициклопентадиена в дициклопентен в жидкой фазе // Нефтехимия. 2009. Т. 49. № 5. С. 386-388
  27. Antonova T.N., Abramov I.A., Feldblyum V.Sh., Abramov I.G., Danilova A.S. // Petrol. Chemistry. 2009. V. 49. № 5. P. 366-368. https://doi.org/10.1134/S0965544109050041.
  28. Liu G., Mi Z., Wang Li, Zhang X. Kinetics of dicyclopentadiene hydrogenation over Pd/Al2O3 catalyst // Ind. Eng. Chem. Res. 2005. V. 44. P. 3846-3851. https://doi.org/10.1021/ie0487437
  29. Zou J.-J., Zhang X., Kong J., Wang L., Zou J.-J., Zhang X., Kong J., Wang L. Hydrogenation of dicyclopentadiene over amorphous nickel alloy catalyst SRNA-4 // Fuel. 2008. V. 87. P. 3655-3659. https://doi.org/10.1016/j.fuel.2008.07.006
  30. Замалютин В.В., Рябов А.В., Ничуговский А.И., Скрябина А.Ю., Ткаченко О.Ю., Флид В.Р. Особенности гетерогенно-каталитического гидрирования 5-винил-2-норборнена // Изв. АН. Сер. хим. 2022. С. 70-75
  31. Zamalyutin V.V., Ryabov A.V., Nichugovskii A.I., Skryabina A.Yu., Tkachenko O.Yu., Flid V.R. // Russ. Chem. Bull. 2022. V. 71. P. 70-75. https://doi.org/10.1007/s11172-022-3378-5.
  32. Замалютин В.В., Рябов А.В., Соломаха Е.А., Кацман Е.А., Флид В.Р., Ткаченко О.Ю., Шпынева М.А. Жидкофазное гетерогенное гидрирование дициклопентадиена // Изв. АН. Сер. хим. 2022. Т. 71. С. 1204-1208
  33. Zamalyutin V.V., Ryabov A.V., Solomakha E.A., Katsman E.A., Flid V.R., Tkachenko O.Yu., Shpinyova M.A. // Russ. Chem. Bull. 2022. V. 71. P. 1204-1208. https://doi.org/10.1007/s11172-022-3521-3.
  34. Замалютин В.В., Шамсиев Р.С., Флид В.Р. Механизм каталитической миграции двойной связи в 2-винилнорборнанах // Изв. АН. Сер. хим. 2022. № 10. С. 2142-2148
  35. Zamalyutin V.V., Shamsiev R.S., Flid V.R. Mechanism of catalytic migration of the double bond in 2-vinylnorbonanes // Russ. Chem. Bull. 2022. P. 2142-2148. https://doi.org/10.1007/s11172-022-3639-3.
  36. Замалютин В.В., Кацман Е А., Данюшевский В.Я., Флид В.Р., Подольский В.В., Рябов А.В. // Коорд. химия. 2021. Т. 47. С. 628-634
  37. Zamalyutin V.V., Katsman E.A., Danyushevsky V.Y., Flid V.R., Podol'skii V.V., Ryabov A.V. // Russ. J. Coord. Chem. 2021. Т. 47. № 10. P. 695-701. https://doi.org/10.31857/S0132344X21100091.
  38. Замалютин В.В., Кацман Е.А., Рябов А.В., Скрябина А.Ю., Шпынева М.А., Данюшевский В.Я., Флид В.Р. Кинетическая модель и механизм гидрирования ненасыщенных карбоциклических соединений на основе норборнадиена // Кинетика и катализ. 2022. Т. 63. № 2. С. 267-276
  39. Zamalyutin V.V., Katsman E.A., Ryabov A.V., Skryabina A.Y., Shpinyova M.A., Danyushevsky V.Y., Flid V.R. // Kinet. Catal. 2022. V. 63. № 2. P. 234-242. https://doi.org/10.31857/S0453881122020150.
  40. Menges N., Balci M. Catalyst-free hydrogenation of alkenes and alkynes with hydrazine in the presence of oxygen // SYNLETT. 2014. № 25. P. 671-676. https:// doi.org/10.1055/S-0033-1340554.
  41. Temkin O.N. Homogeneous catalysis with metal complexes: kinetic aspects and mechanisms. New York: Wiley. 2012. 830 р.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023