Получение CО и CH4 по реакции гидрирования CO2 в условиях катализа в низкотемпературной плазме

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Исследован процесс гидрирования CO2 в плазме барьерного разряда с использованием катализаторов на основе микро- и мезопористых материалов. Катализаторы синтезированы методом пропитки носителей, содержащих цеолиты типов MFI и MTW, а также мезопористый материал SBA-15. Полученные катализаторы исследованы физико-химическими методами анализа (низкотемпературная адсорбция–десорбция N2, термопрограммированная десорбция NH3, рентгеновская фотоэлектронная спектроскопия, рентгенофазовый анализ). Установлено, что повышение селективности по CH4 (до 87%) достигается в присутствии цеолитсодержащих катализаторов с низкой кислотностью. В присутствии катализаторов, содержащих мезопористый материал SBA-15, повышаются конверсия CO2 (с 24 до 33%) и выход CO, однако реакция метанирования CO2 не протекает (селективность по CH4 составляет < 2.5%).

Full Text

Restricted Access

About the authors

Олег Владимирович Голубев

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Author for correspondence.
Email: golubev@ips.ac.ru
ORCID iD: 0000-0002-8558-3094

к. х. н.

Russian Federation, Москва, 119991

Антон Львович Максимов

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Email: golubev@ips.ac.ru
ORCID iD: 0000-0001-9297-4950

д. х. н., чл.- корр. РАН

Russian Federation, Москва, 119991

References

  1. Vogt C., Monai M., Kramer G.J., Weckhuysen B.M. The renaissance of the Sabatier reaction and its applications on Earth and in space // Nat. Catal. 2019. V. 2. № 3. P. 188–197. https://doi.org/10.1038/s41929-019-0244-4
  2. Fan W.K., Tahir M. Recent trends in developments of active metals and heterogenous materials for catalytic CO2 hydrogenation to renewable methane: A review // J. Environ. Chem. Eng. 2021. V. 9. № 4. ID105460. https://doi.org/10.1016/j.jece.2021.105460
  3. Gao J., Liu Q., Gu F., Liu B., Zhon, Z., Su F. Recent advances in methanation catalysts for the production of synthetic natural gas // RSC Adv. 2015. V. 5. P. 22759–22776. https://doi.org/10.1039/C4RA16114A
  4. Tahir M., Tahir B. Constructing a stable 2D/2D heterojunction of oxygen-cluster-modified Ti3AlC2 MAX cocatalyst with proton-rich C3N4 for highly efficient photocatalytic CO2 methanation // Ind. Eng. Chem. Res. 2020. V. 59(21). P. 9841–9857. https://doi.org/10.1021/acs.iecr.0c00193
  5. Manthiram K., Beberwyck B.J., Alivisatos A.P. Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst // J. Am. Chem. Soc. 2014. V. 136 № 38. P. 13319–13325. https://doi.org/10.1021/ja5065284
  6. Alitalo A., Niskanen M., Aura E. Biocatalytic methanation of hydrogen and carbon dioxide in a fixed bed bioreactor // Bioresour. Technol. 2015. V. 196. P. 600–605. https://doi.org/10.1016/j.biortech.2015.08.021
  7. Chen H., Goodarzi F., Mu Y., Chansai S., Mielby J.J., Mao B., Sooknoi T., Hardacre C., Kegnæs S., Fan X. Effect of metal dispersion and support structure of Ni/silicalite-1 catalysts on non-thermal plasma (NTP) activated CO2 hydrogenation // Appl. Catal. B Environ. 2020. V. 272. ID119013. https://doi.org/10.1016/j.apcatb.2020.119013
  8. Ahmad F., Lovell E.C., Masood H., Cullen P.J., Ostrikov K.K., Scott J.A., Amal R. Low-temperature CO2 methanation: Synergistic effects in plasma–Ni hybrid catalytic system // ACS Sustain. Chem. Eng. 2020. V. 8. P. 1888–1898. https://doi.org/10.1021/acssuschemeng.9b06180.
  9. Chen H., Mu Y., Shao Y., Chansai S., Xiang H., Jiao Y., Hardacre C., Fan X. Nonthermal plasma (NTP) activated metal–organic frameworks (MOFs) catalyst for catalytic CO2 hydrogenation // AIChE J. 2020. V. 66. ID e16853. https://doi.org/10.1002/aic.16853
  10. Bacariza M.C., Biset-Peiró M., Graça I., Guilera J., Morante J., Lopes J.M., Andreu T., Henriques C. DBD plasma-assisted CO2 methanation using zeolite-based catalysts: Structure composition–reactivity approach and effect of Ce as promoter // J. CO2 Util. 2018. V. 26. P. 202–211. https://doi.org/10.1016/j.jcou.2018.05.013
  11. Biset-Peiró M., Guilera J., Zhang T., Arbiol J., Andreu T. On the role of ceria in Ni–Al2O3 catalyst for CO2 plasma methanation // Appl. Catal. A Gen. 2019. V. 575. P. 223–229. https://doi.org/10.1016/j.apcata.2019.02.028
  12. Chen H., Mu Y., Shao Y., Chansai S., Xu S., Stere C.E., Xiang H., Zhang R., Jiao Y., Hardacre C., Fan X. Coupling non-thermal plasma with Ni catalysts supported on BETA zeolite for catalytic CO2 methanation // Catal. Sci. Technol. 2019. V. 9. P. 4135–4145. https://doi.org/10.1039/C9CY00590K
  13. Mikhail M., Da Costa P., Amouroux J., Cavadias S., Tatoulian M., Ognier S., Gálvez M.E. Effect of Na and K impurities on the performance of Ni/CeZrOx catalysts in DBD plasma–catalytic CO2 methanation // Fuel. 2021. V. 306. ID121639. https://doi.org/10.1016/j.fuel.2021.121639
  14. Mu Y., Xu S., Shao Y., Chen H., Hardacre C., Fan X. Kinetic study of nonthermal plasma activated catalytic CO2 hydrogenation over Ni supported on silica catalyst // Ind. Eng. Chem. Res. 2020. V. 59(20). P. 9478–9487. https://dx.doi.org/10.1021/acs.iecr.0c01477
  15. Wang J., Wang X., AlQahtani M.S., Knecht S.D., Bil´en S.G., Chu W., Song C. Synergetic effect of non-thermal plasma and supported cobalt catalyst in plasma-enhanced CO2 hydrogenation // Chem. Eng. J. 2023. V. 451. ID138661. https://doi.org/10.1016/j.cej.2022.138661
  16. Lan L., Wang A., Wang Y. CO2 hydrogenation to lower hydrocarbons over ZSM-5-supported catalysts in a dielectric-barrier discharge plasma reactor // Catal. Commun. 2019. V. 130. ID105761. https://doi.org/10.1016/j.catcom.2019.105761
  17. Wang J., AlQahtani, M.S., Wang X., Knecht S.D., Bilén S.G., Song C., Chu W. One-step plasma-enabled catalytic carbon dioxide hydrogenation to higher hydrocarbons: Significance of catalyst-bed configuration // Green Chem. 2021. V. 23. P. 1642–1647. https://doi.org/10.1039/D0GC03779F
  18. Men Y.-L., Liu Y., Wang Q., Luo Z.-H., Shao S., Li Y.-B., Pan Y.-X. Highly dispersed Pt-based catalysts for selective CO2 hydrogenation to methanol at atmospheric pressure // Chem. Eng. Sci. 2019. V. 200. P. 167–175. https://doi.org/10.1016/j.ces.2019.02.004
  19. Xiao S., Zhang Y., Gao P., Zhong L., Li X., Zhang Z., Wang H., Wei W., Sun Y. Highly efficient Cu-based catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol // Catal. Today. 2017. V. 281. P. 327–336. https://doi.org/10.1016/j.cattod.2016.02.004
  20. Du J., Zong L., Zhang S., Gao Y., Dou L., Pan J., Shao T. Numerical investigation on the heterogeneous pulsed dielectric barrier discharge plasma catalysis for CO2 hydrogenation at atmospheric pressure: Effects of Ni and Cu catalysts on the selectivity conversions to CH4 and CH3OH // Plasma Process Polym. 2022. V. 19(2). ID2100111. https://doi.org/10.1002/ppap.202100111
  21. Michiels R., Engelmann Y., Bogaerts A. Plasma catalysis for CO2 hydrogenation: unlocking new pathways toward CH3OH // J. Phys. Chem. C. 2020. V. 124(47). P. 25859–25872. https://doi.org/10.1021/acs.jpcc.0c07632
  22. Цаплин Д.Е., Макеева Д.А., Куликов Л.А., Максимов А.Л., Караханов Э.А. Синтез цеолитов ZSM-12 c применением новых темплатов на основе солей этаноламинов // Журн. прикл. химии. 2018. Т. 91. № 12. C. 1729–1734. https://doi.org/10.1134/S004446181812006X. [Tsaplin D.E., Makeeva D.A., Kulikov L.A., Maksimov A.L., Karakhanov E.A. Synthesis of ZSM-12 zeolites with new templates based on salts of ethanolamines // Russ. J. Appl. Chem. 2018. V. 91. № 12. P. 1957–1962. https://doi.org/10.1134/S1070427218120066]
  23. Meynen V., Cool P., Vansant E.F. Verified syntheses of mesoporous materials // Microporous. Mesoporous. Mater. 2009. V. 125. P. 170–223. https://doi.org/10.1016/j.micromeso.2009.03.046

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of the plasma-catalytic unit.

Download (31KB)
3. Fig. 2. Adsorption isotherms of the synthesised catalyst samples.

Download (16KB)
4. Fig. 3. X-ray photoelectron spectra of the synthesised catalyst samples. Blue line - experimental data, red line - approximating spectrum.

Download (72KB)
5. Fig. 4. NH3-TPD curves (a) and X-ray diffraction patterns (b) of the synthesised catalyst samples.

Download (33KB)
6. Fig. 5. Results of plasma-catalytic hydrogenation of CO2: a) reactant conversion; b) CO/CH4 selectivity; c) CO/CH4 yield; d) power and energy efficiency.

Download (44KB)
7. Fig. 6. Barrier discharge reactor design: a) registration of optical spectra; b) overview spectrum; c) spectrum of the region outside the catalyst zone; d) spectrum of the catalyst layer region.

Download (45KB)

Copyright (c) 2024 Russian Academy of Sciences