Origin of Gaussberg volcano within the continental margin of the Antarctic continent (petrogeochemical features and geodynamic model)
- Authors: Baranov A.A.1, Sushchevskaya N.M.2, Lobkovsky L.I.3
-
Affiliations:
- Sсhmidt Institute of Physics of the Earth, Russian Academy of Sciences
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
- Shirshov Institute of Oceanology, Russian Academy of Sciences
- Issue: Vol 65, No 3 (2025)
- Pages: 488-498
- Section: Морская геология
- URL: https://journals.eco-vector.com/0030-1574/article/view/687578
- DOI: https://doi.org/10.31857/S0030157425030098
- EDN: https://elibrary.ru/GWIWBG
- ID: 687578
Cite item
Abstract
On the coast of East Antarctica, in the area of 89 degrees east longitude, the Gaussberg volcano was discovered with rare lamproite lavas of Pleistocene age. To explain the origin of this rare volcanism, we calculated the distributions of temperature anomalies and mantle flow velocities for the South Polar Region. Numerical calculations show that the vertical flows of the hot material of the Kerguelen plume flatten closer to the Earth’s surface and then the hot material of this plume is transported by subhorizontal currents in the upper mantle to the southeast to the edge of the lithosphere of East Antarctica. This process can cause melting of the edge of the continental lithosphere. The molten material rises to the surface and erupts in our proposed volcanic province of Gaussberg. Based on a detailed analysis of the subglacial relief in this area, it can be assumed that there are other subglacial volcanoes.
Keywords
Full Text

About the authors
A. A. Baranov
Sсhmidt Institute of Physics of the Earth, Russian Academy of Sciences
Author for correspondence.
Email: aabaranov@gmail.com
Russian Federation, Moscow
N. M. Sushchevskaya
Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
Email: nadsus@gmail.com
Russian Federation, Moscow
L. I. Lobkovsky
Shirshov Institute of Oceanology, Russian Academy of Sciences
Email: nadsus@gmail.com
Russian Federation, Moscow
References
- Баранов А., Бобров A. Строение и свойства коры архейских кратонов южных материков: сходства и различия // Геология и геофизика. 2018. Т. 59. № 5. С. 636–652.
- Баранов А.А., Лобковский Л.И. Глубочайшие впадины на суше в Антарктиде как результат кайнозойской активизации рифтогенеза // Докл. РАН. Науки о Земле. 2024. Т. 514. № 1. С. 50–55.
- Баранов А.А., Лобковский Л.И., Бобров А.М. Глобальная геодинамическая модель современной Земли и ее приложение для Антарктиды // Докл. РАН. Науки о Земле. 2023. Т. 512. № 1. С. 100–105.
- Бобров А.М., Баранов А.А. Модель мантийной конвекции с неньютоновской реологией и фазовыми переходами: структура течений и поля напряжений // Физика Земли. 2016. Т. 52. № 1. С. 133–148.
- Голынский А.В., Голынский Д.А. Рифтовые системы в тектонической структуре Восточной Антарктиды // Научные результаты российских геолого-геофизических исследований в Антарктике. 2009. Вып. 2. С. 132–162.
- Голынский Д.А., Голынский А.В. Рифтовые системы Восточной Антарктиды – ключ к пониманию распада Гондваны // Региональная геология и металлогения. 2012. № 52. C. 58–72.
- Лейченков Г.Л., Гусева Ю.Б. Строение и история развития земной коры осадочного бассейна моря Дейвиса, Восточная Антарктика // Научные результаты геолого-геофизических исследований в Антарктике / Г.Л. Лейченков, А.А. Лайба (ред.). 2006. Вып. 1. C. 101–115.
- Лейченков Г.Л., Дубинин Е.П., Грохольский А.Л., Агранов Г.Д. Формирование и эволюция микроконтинентов плато Кергелен, южная часть Индийского океана // Геотектоника. 2018. № 5. C. 3–21.
- Лобковский Л.И., Баранов А.А., Бобров А.М., Чуваев А.В. Глобальная геодинамическая модель современной Земли и ее приложение для Арктического региона // Докл. РАН. Науки о Земле. 2024. Т. 514. № 2. С. 293–299.
- Лобковский Л.И., Никишин А.М., Хаин В.Е. Современные проблемы геотектоники и геодинамики. М.: Научный Мир, 2004. 610 с.
- Мигдисова Н.А., Сущевская Н.М., Портнягин М.В. и др. Особенности состава породообразующих минералов лампроитовых лав вулкана Гауссберг, Восточная Антарктида // Геохимия. 2023. Т. 68. № 9. С. 897–925.
- Сущевская Н.М., Беляцкий Б.В., Дубинин Е.П., Левченко О.В. Эволюция плюма Кергелен и его влияние на магматизм континентальных и океанических областей восточной Антарктиды // Геохимия. 2017. № 9. C. 782–799.
- Сущевская Н.М., Мигдисова Н.А., Антонов А.В. и др. Геохимические особенности лампроитовых лав четвертичного вулкана Гауссберг (Восточная Антарктида) – результат влияния мантийного плюма Кергелен // Геохимия. 2014. № 12. C. 1079–1098.
- Чуваев А.В., Баранов А.А., Бобров А.М. Численное моделирование конвекции в мантии Земли с использованием облачных технологий // Вычислительные технологии. 2020. Т. 25. № 2. C. 103–117.
- Avanzinelli R., Elliott T., Tommasin, S., Conticelli S. Constraints on the genesis of potassium-rich Italian volcanic rocks from U/Th disequilibrium // J. Petrol. 2008. V. 49. P. 195–223.
- Baranov A., Morelli A. The Moho depth map of the Antarctica region // Tectonophysics. 2013. V. 609. P. 299–313.
- Baranov A., Morelli A. The structure of sedimentary basins of Antarctica and a new three-layer sediment model // Tectonophysics. 2023. V. 846. 229662.
- Baranov A., Tenzer R., Bagherbandi M. Combined Gravimetric-Seismic Crustal Model for Antarctica // Surveys in Geophysics. 2018. V. 39. P. 23–56.
- Baranov A., Tenzer R., Morelli A. Updated Antarctic Crustal Model // Gondwana Research. 2021. V. 89. P. 1–18.
- Bobrov A.M., Baranov A.A. Thermochemical Mantle Convection with Drifting Deformable Continents: Main Features of Supercontinent Cycle // Pure and Applied Geophysics. 2019. V. 176. № 8. P. 3545–3565.
- Chen Y., Zhang Y., Graham D. et al. Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China // Lithos. 2007. V. 96. P. 108–126.
- Chu Z.Y., Harvey J., Liu C.Z. et al. Source of highly potassic basalts in northeast China: evidence from Re–Os, Sr–Nd–Hf isotopes and PGE geochemistry // Chem. Geol. 2013. V. 357. P. 52–66.
- Elburg M., Foden J. Sources for magmatism in central Sulawesi: geochemical and Sr–Nd–Pb isotopic constraints // Chem. Geol. 1999. V. 156. P. 67–93.
- Fei Y., Orman J.V., Li J. et al. Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications // J. Geophys. Res. 2004. V. 109. B02305.
- Foley S.F. An experimental study of olivine lamproite: First results from the diamond stability field // Geochim. Cosmochim. Acta. 1993. V. 57. P. 483–489.
- Foley S.F., Ezad I.S., van der Laan S.R., Pertermann M. Melting of hydrous pyroxenites with alkali amphiboles in the continental mantle: 1. Melting relations and major element compositions of melts // Geosci. Front. 2022. V. 13. № 4. P. 101–380.
- Foley S.F., Venturelli G., Green D.H., Toscani L. The ultrapotassic Rocks: Characteristics, classification, and constraints for petrogenetic models // Earth Science Reviews. 1987. V. 24. P. 81–134.
- Fretwell P., Pritchard H.D., Vaughan D.G. et al. Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica // Cryosphere. 2013. V. 7. P. 375–393.
- Frey F.A., Weis D., Yang H.J. et al. Temporal geochemical trends in Kerguelen Archipelago basalts: evidence for decreasing magma supply from the Kerguelen Plume // Chemical Geology. 2000. V. 164. P. 61–80.
- Geyer A., Di Roberto A., Smellie J.L. et al. Volcanism in Antarctica: An assessment of the present state of research and future directions // Jour. Volcanology and Geother. Res. 2023. V. 444. 107941.
- Gupta A.K. The system forsterite–diopside–akermanite–leucite and its significance in the origin of potassium-rich mafic and ultramafic rocks // American Mineralogist. 1972. V. 57. P. 1242–1259.
- Hughes T.J.R. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1987. P. 1–80.
- Jackson M., Konter J., Becker T. Primordial helium entrained by the hottest mantle plumes // Nature. 2017. V. 542. P. 340–343.
- Jaques A.L., Lewis J.D., Smith C.B. et al. The diamond-bearing ultrapotassic (lamproitic) rocks of the West Kimberly region, Western Australia // Kimberlites I: Kimberlites and Related Rocks / Kornprobst J. (ed.). Amsterdam: Elsevier, 1984. P. 225–254.
- Kiritani T., Kimura J.I., Ohtani E. et al. Transition zone origin of potassic basalts from Wudalianchi volcano, northeast China // Lithos. 2013. V. 156–159. P. 1–12.
- McKenzie D. Some remarks on the movement of small melt fractions in the mantle // Earth. Planet. Sci. Lett. 1989. V. 95. P. 53–72.
- Megnin C., Romanowicz B. The shear velocity structure of the mantle from the inversion of body, surface, and higher modes waveforms // Geophys. J. Int. 2000. V. 143. P. 709–728.
- Morgan W.J., Phipps-Morgan J. Plate velocities in the hotspot reference frame // Geological Society of America Special Papers. 2007. V. 430. P. 65–78.
- Morlighem M., Rignot E., Binder T. et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet // Nat. Geosci. 2020. V. 13. P. 132–137.
- Murphy D.T., Collerson K.D., Kamber B.S. Lamproites from Gaussberg, Antarctica: Possible Transition Zone Melts of Archaean Subducted Sediments // Jour. of Petrology. 2002. V. 43. № 6. P. 981–1001.
- Nikishin A.M., Ziegler P.A., Abbott D., Brunet M.F., Cloetingh S. Permo-Triassic intraplate magmatism and rifting in Eurasia:implications for mantle plumes and mantle dynamics // Tectonophysics. 2002. V. 351. P. 3–39.
- Prelevic D., Foley S.F., Romer R., Conticelli S. Mediterranean tertiary lamproites derived from multiple source components in postcollisional geodynamics // Geochim. Cosmochim. Acta. 2008. V. 72. P. 2125–2156.
- Ramage A., Wathen A.J. Iterative solution techniques for the Stokes and Navier-Stokes equations // Int. J. Numer. Methods. Fluids. 1994. V. 19. P. 67–83.
- Schubert G., Turcotte D.L., Olson P. Mantle Convection in the Earth and Planets. New York: Cambridge Univ. Press, 2001. 940 p.
- Segev A. Flood basalts, continental breakup and the dispersal of Gondwana: evidence for periodic migration of upwelling mantle flows (plumes) // From continental extension to collision: Africa-Europe interaction, the Dead Sea Rift and analogue natural laboratories / Cloetingh S.A.P.L., Ben-Avraham Z. (eds). European Geosciences Union, Stephan Mueller Special Publication Series. 2002. V. 2. P. 171–191.
- Sheraton J.W., Cundari A. Leucitites from Gaussberg, Antarctica // Contrib. Mineral. Petrol. 1980. V. 71. P. 417–427.
- Sun Y., Ying J., Zhou X. et al. Geochemistry of ultrapotassic volcanic rocks in Xiaogulihe NE China: Implications for the role of ancient subducted sediments // Lithos. 2014. V. 208–209. P. 53–66.
- Tingey R.J., McDougall I., Gleadow J.W. The age and mode of formation of Gaussberg, Antarctica // Journal of the Geological Society of Australia. 1983. V. 30. P. 241–246.
- van Wyk de Vries M., Bingham R., Hein A. A new volcanic province: an inventory of subglacial volcanoes in West Antarctica // Geological Society Special Publications. 2018. V. 461(1). P. 231.
- Vyalov O.S., Sobolev V.S. Gaussberg, Antarctica // Internat. Geol. Review. 1959. № 1(7). P. 30–40.
- Zhang M., Suddaby P., O'Reilly S.Y. et al. Nature of the lithospheric mantle beneath the eastern part of the Central Asian fold belt: mantle xenoliths evidence // Tectonophysics. 2000. V. 328. P. 131–156.
- Zhong S., Zuber M.T., Moresi L.N., Gurnis M. Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection // Jour. Geophys. Res.: Solid Earth. 2000. V. 105. № B5. P. 11063–11082.
- Zou H., Reid M.R., Liu Y. et al. Constraints on the origin of historic potassic basalts from northeast China by U/Th disequilibrium data // Chem. Geol. 2003. V. 200. P. 189–201.
Supplementary files
