Gas-Geochemical Features of Bottom Sediments in the Linear Depression Zone of the West Kara Stage

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

During the 89th cruise of the R/V Academic Mstislav Keldysh in 2022, sediment columns were sampled at stations 7441 and 7444 located in the southwestern part of the Kara Sea. Station 7444 was located on a large submeridional depression, under the bottom of which gas-saturated sedimentary strata were detected. Background station 7441 was located at a distance of 68 km from station 7444. For the sediments of the background station 7441, the ratio of hydrocarbon gases C1 / C2+ < 100 indicated their thermogenic nature. In the sediment at station 7441, the formation of the gas component in the sediment was due to degradation of OM and inflow of thermogenic gases, while in the sediment of station 7444 there was an inflow of biogenic gas, apparently, from permafrost. The average concentration of CH4 in the sediment of station 7444 exceeded the average concentration in the sediment of column 7441 by 700 times, and the average concentrations of CO2 in the sediment of stations 7444 and 7441 were comparable. A sulfate-methane transition zone (SMTZ) was detected at the 541–545 cm horizon of the sediment of station 7444, where sulfate concentration decreased to minimum values, CH4 and CO2 concentrations reached maximum values. The sulfur isotopic composition of δ34S in this region was +20.8‰. The biogenic nature of gas in the sediment of station 7444 was evidenced by low values of the carbon isotopic composition of CH4 (mean value δ13C(CH4) = –99.7‰), and high C1 / C2+ > 10000 ratio near the SMTZ.

Texto integral

Acesso é fechado

Sobre autores

V. Sevastyanov

Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: vsev@geokhi.ru
Rússia, Moscow

V. Fedulova

Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences

Email: vsev@geokhi.ru
Rússia, Moscow

E. Moroz

Geological Institute of Russian Academy of Sciences

Email: vsev@geokhi.ru
Rússia, Moscow

E. Krasnova

Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences; Lomonosov Moscow State University

Email: vsev@geokhi.ru
Rússia, Moscow; Moscow

S. Naymushin

Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences

Email: vsev@geokhi.ru
Rússia, Moscow

N. Dushenko

Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences

Email: vsev@geokhi.ru
Rússia, Moscow

S. Voropaev

Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences

Email: vsev@geokhi.ru
Rússia, Moscow

A. Dolgonosov

Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences

Email: vsev@geokhi.ru
Rússia, Moscow

Bibliografia

  1. Ананьев Р.А., Дмитревский Н.Н., Росляков А.Г. и др. Использование комплексных акустических методов для мониторинга процессов эмиссии газов на шельфе арктических морей // Океанология. 2022. Т. 62. № 1. С. 151–157.
  2. Баранов Б.В., Лобковский Л.И., Дозорова К.А. и др. Система разломов, контролирующих метановые сипы на шельфе моря Лаптевых // Докл. РАН. 2019. Т. 486. № 3. С. 354–358.
  3. Баранов Б.В., Амбросимов А.К., Мороз Е.А. и др. Позднечетвертичные контуритовые дрифты на шельфе Карского моря // Докл. РАН. Науки о Земле. 2023. Т. 511. № 2. С. 102–108.
  4. Бондур В.Г., Кузнецова Т.В. Выявление газовых сипов в акваториях арктических морей с использованием данных дистанционного зондирования // Исследование Земли из космоса. 2015. № 4. С. 30–43.
  5. Верба М.Л. Современное билатеральное растяжение земной коры в Баренцево-Карском регионе и его роль при оценке перспектив нефтегазоносности // Нефтегазовая геология. Теория и практика. 2007. Т. 2. С. 1–37.
  6. Галимов Э.М., Кодина Л.А. Исследование органического вещества и газов в донных толщах дна Мирового океана. М.: Наука, 1982. 228 с.
  7. Денисова А.П., Мороз Е.А., Сухих Е.А. и др. Признаки глубинной дегазации в верхней части осадочного чехла шельфа и водной толще Карского моря // Геология морей и океанов: Материалы XXIV Международной научной конференции (Школы) по морской геологии. М.: ИО РАН, 2021. Т. IV. С. 235–239.
  8. Мусатов Е.Е. Палеодолины Баренцево-Карского шельфа // Геоморфология. 1998. № 2. С. 90–95.
  9. Соколов С.Ю., Мороз Е.А., Агранов Г.Д. и др. Проявления дегазации в верхней части осадочного разреза Печорского моря и ее связь с тектоникой // Докл. РАН. Науки о Земле. 2021. Т. 499. № 2. С. 91–96.
  10. Galimov E.M. Isotope organic geochemistry // Org. Geochem. 2006. V. 37. № 10. P. 1200–1262. https://doi.org/10.1016/j.orggeochem.2006.04.009
  11. Hedges J.I., Keil R.G. Sedimentary organic matter preservation: an assessment and speculative synthesis // Mar. Chem. 1995. V. 49. P. 81–115. https://doi.org/10.1016/0304-4203(95)00008-f
  12. Hilligsoe K.M., Jensen J.B., Ferdelman T.G. et al. Methane fluxes in marine sediments quantified through core analyses and seismo-acoustic mapping (Bornholm Basin, Baltic Sea) // Geochim. Cosmochim. Acta. 2018. V. 239. P. 255–274. https://doi.org/10.1016/j.gca.2018.07.040
  13. Hong W.L., Torres M.E., Carroll J. et al. Seepage from an Arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming // Nature Commun. 2017. 8:15745. https://doi.org/10.1038/ncomms15745
  14. Keller M.D, Bellows W.K., Guillard R.R. Dimethyl sulfide production in marine phytoplankton // In: Saltzman E.S., Cooper W.J. (Eds.). Biogenic sulfur in the environment. Washington, D.C.: American Chemical Society, 1989. P. 167–182.
  15. Kim J.H., Torres M.E., Choi J. et al. Inferences on gas transport based on molecular and isotopic signatures of gases at acoustic chimneys and background sites in the Ulleung Basin // Org. Geochem. 2012. V. 43. P. 26–38. https://doi.org/10.1016/j.orggeochem.2011.11.004
  16. Kim J.H., Hachikubo A., Kida M. et al. Upwarding gas source and postgenetic processes in the shallow sediments from the ARAON Mounds, Chukchi Sea // J. Nat. Gas Sci. Eng. 2020. V. 76. 103223. https://doi.org/10.1016/j.jngse.2020.103223
  17. Mau S., Romer M., Torres M.E. et al. Widespread methane seepage along the continental margin off Svalbard-from Bjornoya to Kongsfjorden // Sci. Rep. 2017. 7:42997. https://doi.org/10.1038/srep42997
  18. Mazumdar A., João H.M., Peketi A. et al. Geochemical and geological constraints on the composition of marine sediment pore fluid: Possible link to gas hydrate deposits // Mar. Pet. Geol. 2012. V. 38. P. 35–52. https://doi.org/10.1016/j.marpetgeo.2012.07.004
  19. McGuire A.D., Anderson L.G., Christensen T.R. et al. Sensitivity of the carbon cycle in the Arctic to climate change // Ecol. Monogr. 2009. V. 79. P. 523–555. https://doi.org/10.1890/08–2025.1.
  20. Milkov A.V., Etiope G. Revised genetic diagrams for natural gases based on a global dataset of > 20.000 samples // Org. Geochem. 2018. V. 125. P. 109–120. https://doi.org/10.1016/j.orggeochem.2018.09.002
  21. Niemann H., Elvert M., Hovland M. et al. Methane emission and consumption at a North Sea gas seep (Tommeliten area) // Biogeosciences. 2005. V. 2 P. 335–351. https://doi.org/10.5194/bg-2–335–2005
  22. Pohlman J.W., Riedel M., Bauer J.E. et al. Anaerobic methane oxidation in low-organic content methane seep sediments // Geochim. Cosmochim. Acta. 2013. V. 108. P. 184–201. https://doi.org/10.1016/j.gca.2013.01.022
  23. Portnov A., J. Smith A.J., Mienert J. et al. Offshore permafrost decay and massive seabed methane escape in water depths > 20m at the South Kara Sea shelf // Geophys. Res. Lett. 2013. V. 40. P. 3962–3967. https://doi.org/10.1002/grl.50735
  24. Rantanen M., Karpechko A.Y., Lipponen A. et al. The Arctic has warmed nearly four times faster than the globe since 1979 // Commun Earth Environ. 2022. V. 3. https://doi.org/10.1038/s43247-022-00498-3
  25. Semenov P., Portnov A., Krylov A. et al. Geochemical evidence for seabed fluid flow linked to the subsea permafrost outer border in the South Kara Sea // Geochemistry. 2020. V. 80. P. 1–9. https://doi.org/10.1016/j.chemer.2019.04.005
  26. Whiticar M.J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane // Chem. Geol. 1999. V. 161. P. 291–314. https://doi.org/10.1016/S0009-2541(99)0009-3

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Landfill topography (a) and map of sampling stations location (b) in the vicinity of station 7444. The hatching shows the projection of the gas front on the bottom surface. A-B - acoustic profiling line (see Fig. 2).

Baixar (526KB)
3. Fig. 2. High-frequency acoustic profiling profile (2-12 kHz) along line A-B (see Fig. 1) with a pronounced ‘bright spot’ type anomaly fixing the gas front roof.

Baixar (197KB)
4. Fig. 3. Vertical distribution of gases in the sediments of Vostok station. 7444 (a) and 7441 (b).

Baixar (828KB)
5. Fig. 4. Vertical distribution of extracted OM in sediments of Vostok station. 7441 и 7444.

Baixar (99KB)
6. Fig. 5. Variation of carbon isotopic composition of extracted OM with sediment depth of vv. 7441 and 7444.

Baixar (93KB)
7. Fig. 6. Change in the shape of isotope-fraction curves of some horizons with sediment depth of stations 7441 (a) and 7444 (b).

Baixar (170KB)

Declaração de direitos autorais © Russian academy of sciences, 2025