Структура вод и поток углекислого газа над континентальным склоном моря Лаптевых и в проливе Вилькицкого в осенний сезон
- Авторы: Полухин А.А.1, Флинт М.В.1, Борисенко Г.В.1, Скороход А.И.2, Панкратова Н.В.2, Беликов И.Б.2, Муравья В.О.1, Гусак Г.В.3, Казакова У.А.1,4, Щука А.С.1
-
Учреждения:
- Институт океанологии им. П.П. Ширшова РАН
- Институт физики атмосферы им. А.М. Обухова РАН
- Гамбургский университет
- Московский государственный университет им. М.В. Ломоносова
- Выпуск: Том 63, № 5 (2023)
- Страницы: 733-744
- Раздел: Химия моря
- URL: https://journals.eco-vector.com/0030-1574/article/view/657576
- DOI: https://doi.org/10.31857/S0030157423050143
- EDN: https://elibrary.ru/PXWXVX
- ID: 657576
Цитировать
Полный текст
Аннотация
В рамках фундаментальной научной программы “Экосистемы морей Сибирской Арктики”, выполняемой Институтом океанологии им. П.П. Ширшова РАН с 2007 г., проведены исследования структуры вод, пространственной изменчивости параметров карбонатной системы, а также рассчитана интенсивность и направление потока углекислого газа над континентальным склоном моря Лаптевых и в проливе Вилькицкого в сентябре 2018 г. Показано присутствие нескольких основных водных масс, определяющих структуру вод в исследованном районе. Выявлена сильная пространственная изменчивость параметров карбонатной системы морских вод, определяемая комплексом физических и химико-биологических процессов. Поток углекислого газа на границе вода–атмосфера, составил от –12 до +4 ммоль м–2 сут–1. Выявлено, что исследованная область внешнего шельфа моря и континентального склона моря Лаптевых является эмитентом углекислого газа в атмосферу по состоянию на сентябрь 2018 г. Район пролива Вилькицкого, наоборот, является областью поглощения СО2.
Ключевые слова
Об авторах
А. А. Полухин
Институт океанологии им. П.П. Ширшова РАН
Автор, ответственный за переписку.
Email: polukhin@ocean.ru
Россия, Москва
М. В. Флинт
Институт океанологии им. П.П. Ширшова РАН
Email: polukhin@ocean.ru
Россия, Москва
Г. В. Борисенко
Институт океанологии им. П.П. Ширшова РАН
Email: polukhin@ocean.ru
Россия, Москва
А. И. Скороход
Институт физики атмосферы им. А.М. Обухова РАН
Email: polukhin@ocean.ru
Россия, Москва
Н. В. Панкратова
Институт физики атмосферы им. А.М. Обухова РАН
Email: polukhin@ocean.ru
Россия, Москва
И. Б. Беликов
Институт физики атмосферы им. А.М. Обухова РАН
Email: polukhin@ocean.ru
Россия, Москва
В. О. Муравья
Институт океанологии им. П.П. Ширшова РАН
Email: polukhin@ocean.ru
Россия, Москва
Г. В. Гусак
Гамбургский университет
Email: polukhin@ocean.ru
Германия, Гамбург
У. А. Казакова
Институт океанологии им. П.П. Ширшова РАН; Московский государственный университет им. М.В. Ломоносова
Email: polukhin@ocean.ru
Россия, Москва; Россия, Москва
А. С. Щука
Институт океанологии им. П.П. Ширшова РАН
Email: polukhin@ocean.ru
Россия, Москва
Список литературы
- Беззубова Е.М., Селиверстова А.М., Замятин И.А. и др. Гетеротрофный бактериопланктон шельфа моря Лаптевых и Восточно-Сибирского моря в области влияния пресноводного стока // Океанология. 2020. Т. 60. № 1. С. 74–86. https://doi.org/10.31857/S0030157420010025
- Бородачев В.Е., Бородачев И.В. Ледовитость моря Лаптевых в условиях колебаний климата Арктики // Проблемы Арктики и Антарктики. 2016. № 3. С. 60–73.
- Демидов А.Б., Гагарин В.И., Артемьев В.А. и др. Вертикальная изменчивость первичной продукции и характеристики подповерхностного хлорофильного максимума в море Лаптевых в августе–сентябре 2015, 2017 и 2018 гг. // Океанология. 2020. Т. 60. № 2. С. 216–232. https://doi.org/10.31857/S0030157420010062
- Маккавеев П.Н., Полухин А.А., Щука С.А. и др. Перенос материковых вод через пролив Вилькицкого в сентябре 2017 и 2018 гг. // Океанология. 2020. Т. 60. № 3. С. 355–363. https://doi.org/10.31857/S0030157420030053
- Панкратова Н.В., Беликов И.Б., Белоусов В.А. и др. Наблюдения концентраций метана, озона, черного углерода, оксидов азота, углерода и содержания δ13CСН4 над морями российской Арктики с борта научно-исследовательского судна летом и осенью 2018 года // Океанология. 2020. Т. 60. № 5. С. 685–695.
- Пипко И.И., Пугач С.П., Семилетов И.П. Характерные особенности динамики карбонатных параметров вод восточной части моря Лаптевых // Океанология. 2015. Т. 55. № 1. С. 78–78. https://doi.org/10.7868/S0030157415010141
- Пипко И.И., Пугач С.П., Семилетов И.П. Оценка потоков CO2 между океаном и атмосферой в восточной части моря Лаптевых в безледный период // Докл. Акад. наук. 2016. Т. 467. № 5. С. 594–594. https://doi.org/10.7868/S0869565216110207
- Пипко И.И. Пугач С.П., Моисеева Ю.А. и др. О динамике растворенного углерода в главном русле реки Лены в июле 2017 г. // Докл. РАН. Науки о Земле. 2021. Т. 500. №. 2. С. 208–215. https://doi.org/10.31857/S2686739721100133
- Пипко И.И. Пугач С.П., Семилетов И.П. Динамика карбонатных характеристик вод Карского моря в позднеосенний сезон 2021 г. // Докл. РАН. Науки о Земле. 2022. Т. 506. № 1. С. 86–91. https://doi.org/10.31857/S2686739722600606
- Полухин А.А., Маккавеев П.Н. Особенности распространения материкового стока по акватории Карского моря // Океанология. 2017. Т. 57. № 1. С. 25–37.
- Полухин А.А., Флинт М.В., Беликов И.Б. и др. Поток углекислого газа на границе вода–атмосфера в районе континентального склона в Карском море // Океанология. 2021. Т. 61. № 5. С. 716–723. https://doi.org/10.31857/S0030157421050117
- Сергеева В.М., Суханова И.Н., Флинт М.В. и др. Фитопланктон желоба св. Анны: влияние абиотических факторов // Океанология. 2020. Т. 60. № 4. С. 528–544. https://doi.org/10.31857/S0030157420040218
- Скороход А.И., Панкратова Н.В., Беликов И.Б. и др. Атмосферный метан и его изотопный состав над морями российской Арктики по результатам судовых измерений летом и осенью 2015 года // Докл. Акад. наук. 2016. Т. 470. № 5. С. 1–5. https://doi.org/10.7868/S0869565216290247
- Современные методы гидрохимических исследований океана / Под ред. Бордовского О.К. и др. М.: ИОАН СССР, 1992. 200 с.
- Степанова С.В., Полухин А.А., Костылева А.В. Гидрохимическая структура вод в восточной части моря Лаптевых осенью 2015 г. // Океанология. 2017. Т. 57. № 1. С. 57–66.
- Стрелецкая И.Д., Васильев А.А., Гусев Е.А. и др. Четвертичные отложения, подземные льды и динамика берегов Западного Таймыра // Система моря Лаптевых и прилегающих морей Арктики: современное состояние и история развития. Под ред. X. Кассенс и др. М.: Изд-во Моск. ун-та, 2009. С. 357–372.
- Флинт М.В., Поярков С.Г., Тимонин А.Г. и др. Структура мезопланктонного сообщества в области континентального склона желоба Святой Анны (Карское море) // Океанология. 2015. Т. 55. №. 4. С. 643–643. https://doi.org/10.7868/S0030157415040061
- Флинт М.В., Поярков С.Г., Римский-Корсаков Н.А. и др. Экосистемы морей сибирской Арктики–2018 (72-й рейс научно-исследовательского судна “Академик Мстислав Келдыш”) // Океанология. 2019. Т. 59. № 3. С. 506–509. https://doi.org/10.31857/S0030-1574593506-509
- AMAP (Arctic Monitoring and Assessment Programme). AMAP Assessment 2018: Arctic Ocean Acidification. Tromsø, Norway, 2018. vi+187pp
- Antonov K.L., Poddubny V.A., Markelov Y.I. et al. Dynamics of surface carbon dioxide and methane concentrations on the Arctic Belyy Island in 2015–2017 summertime // Proceedings of 24th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. SPIE, 2018. V. 10833. P. 1379–1384. https://doi.org/10.1117/12.2504770
- Bauch D., Torres-Valdes S., Polyakov I. et al. Halocline water modification and along-slope advection at the Laptev Sea continental margin // Ocean Science. 2014. V. 10. № 1. P. 141–154. https://doi.org/10.5194/os-10-141-2014
- Bauch D., Cherniavskaia E., Timokhov L. Shelf basin exchange along the Siberian continental margin: Modification of Atlantic Water and Lower Halocline Water // Deep Sea Research Part I: Oceanographic Research Papers. 2016. V. 115. P. 188–198. https://doi.org/10.1016/j.dsr.2016.06.008
- Behnke M.I., McClelland J.W., Tank S.E. et al. Pan-Arctic Riverine Dissolved Organic Matter: Synchronous Molecular Stability, Shifting Sources and Subsidies // Global Biogeochemical Cycles. 2021. V. 35(4). https://doi.org/10.1029/2020gb006871
- Belevich T.A., Demidov A.B., Shchuka S.A. et al. Picophytoplankton distribution along Khatanga Bay-shelf-continental slope environment gradients in the western Laptev Sea // Heliyon. 2021. V. 7. № 2. P. e06224. https://doi.org/10.1016/j.heliyon.2021.e06224
- Carmack E., Winsor P., Williams W. The contiguous panarctic Riverine Coastal Domain: A unifying concept // Progress in Oceanography. 2015. V. 139. P. 13–23. https://doi.org/10.1016/j.pocean.2015.07.014
- Chierici M., Fransson A. Calcium carbonate saturation in the surface water of the Arctic Ocean: undersaturation in freshwater influenced shelves // Biogeosciences. 2009. V. 6. № 11. P. 2421–2431. https://doi.org/10.5194/bg-6-2421-2009
- Dickson A. G. The measurement of sea water pH // Marine Chem. 1993. V. 44. № 2–4. P. 131–142.
- Dmitrenko I.A., Kirillov S.A., Ivanov V.V. et al. Mesoscale Atlantic water eddy off the Laptev Sea continental slope carries the signature of upstream interaction // J. Geophys. Res. Oceans. 2008. V. 113. № C7. https://doi.org/10.1029/2007JC004491
- Fransson A., Chierici M., Nomura D. et al. Effect of glacial drainage water on the CO2 system and ocean acidification state in an Arctic tidewater-glacier fjord during two contrasting years //J. Geophys. Res. Oceans. 2015. V. 120. № 4. P. 2413–2429. https://doi.org/10.1002/2014JC010320
- Fransson A., Chierici M., Nomura D. et al. Influence of glacial water and carbonate minerals on wintertime sea-ice biogeochemistry and the CO2 system in an Arctic fjord in Svalbard // Annals of Glaciology. 2020. V. 61(83). P. 320–340. https://doi.org/10.1017/aog.2020.52
- Ivanov V.V., Golovin P.N. Observations and modeling of dense water cascading from the northwestern Laptev Sea shelf // J. Geophys. Res. 2007. V. 112. C09003. https://doi.org/10.1029/2006JC003882
- Jeong S.J., Bloom A.A., Schimel D. et al. Accelerating rates of Arctic carbon cycling revealed by long-term atmospheric CO2 measurements // Science advances. 2018. V. 4. № 7. C. eaao1167. https://doi.org/10.1126/sciadv.aao1167
- Kremenetskiy V.V., Nedospasov A.A., Shchuka S.A. et al. On the Structure of Water Exchange Between the Deep Northern and Shelf Southwestern Part of the Kara Sea over the Brusilov Sill // Oceanology. 2021. V. 61. № 6. P. 786–790. https://doi.org/10.1134/S0001437021060266
- Lalande C., Bélanger S., Fortier L. Impact of a decreasing sea ice cover on the vertical export of particulate organic carbon in the northern Laptev Sea, Siberian Arctic Ocean // Geophys. Res. Lett. 2009. V. 36. № 21. https://doi.org/10.1016/j.csr.2009.08.009
- Lewis E.R., Wallace D.W.R. Program developed for CO2 system calculations. Environmental System Science Data Infrastructure for a Virtual Ecosystem (ESS-DIVE)(United States), 1998. CDIAC-105.
- Oostdijk M., Sturludóttir E., Santos M.J. Risk Assessment for Key Socio-Economic and Ecological Species in a Sub-Arctic Marine Ecosystem Under Combined Ocean Acidification and Warming // Ecosystems. 2022. V. 25. P. 1117–1134. https://doi.org/10.1007/s10021-021-00705-w
- Osadchiev A.A., Pisareva M.N., Spivak E.A. et al. Freshwater transport between the Kara, Laptev, and East-Siberian seas // Scientific Reports. 2020. V. 10. 13041. https://doi.org/10.1038/s41598-020-70096-w
- Pankratova N., Skorokhod A., Belikov I. et al. Evidence of atmospheric response to methane emissions from the East Siberian Arctic shelf // Geography, Environment, sustainability. 2018. V. 11. P. 85–92. https://doi.org/10.24057/2071-9388-2018-11-1-85-92
- Pavlova G.Y., Tishchenko P.Y., Volkova T.I. et al. Intercalibration of Bruevich’s Method to Determine the Total Alkalinity in Seawater // Oceanology. 2008. V. 48. P. 438–443. https://doi.org/10.1134/S0001437008030168
- Pipko I.I., Pugach S.P., Dudarev O.V. et al. Carbonate parameters of the Lena River: Characteristics and distribution // Geochem. Intl. 2010. V. 48. № 11. P. 1131.
- Pipko I. I., Pugach S. P., Semiletov I. P. et al. The spatial and interannual dynamics of the surface water carbonate system and air–sea CO2 fluxes in the outer shelf and slope of the Eurasian Arctic Ocean // Ocean Science. 2017. V. 13. P. 997–1016. https://doi.org/10.5194/os-13-997-2017
- Pnyushkov A., Polyakov I. V., Padma L. et al. Structure and dynamics of mesoscale eddies over the Laptev Sea continental slope in the Arctic Ocean // Ocean Science. 2018. V. 14. № 5. P. 1329–1347. https://doi.org/10.5194/os-14-1329-2018
- Pogojeva M., Polukhin A., Makkaveev P. et al. Arctic Inshore Biogeochemical Regime Influenced by Coastal Runoff and Glacial Melting (Case Study for the Templefjord, Spitsbergen) // Geosciences. 2022. V. 12. P. 44. https://doi.org/10.3390/geosciences12010044
- Qi D., Ouyang Z., Chen L. et al. Climate change drives rapid decadal acidification in the Arctic Ocean from 1994 to 2020 // Science. 2022. V. 377. № 6614. P. 1544-1550. https://doi.org/10.1126/science.abo0383
- Rawlins M.A., Connolly C.T., McClelland J.W. Modeling Terrestrial Dissolved Organic Carbon Loading to Western Arctic Rivers // J. Geophys. Res. Biogeosciences. 2021. V. 126. Iss. 10. https://doi.org/10.1029/2021jg006420
- Roy R.N., Roy L.N., Vogel K.M. et al. The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to 45 C // Marine Chem. 1993. V. 44. № 2–4. P. 249–267.
- Semiletov I.P., Pipko I.I., Repina I.A. et al. Carbonate chemistry dynamics and carbon dioxide fluxes across the atmosphere–ice–water interfaces in the Arctic Ocean: Pacific sector of the Arctic // J. Marine Sys. 2007. V. 66. № 1–4. P. 204–226. https://doi.org/10.1016/j.jmarsys.2006.05.012
- Semiletov I., Pipko I., Gustafsson Ö. et al. Acidification of East Siberian Arctic Shelf waters through addition of freshwater and terrestrial carbon // Nature Geosci. 2016. V. 9. P. 361–365. https://doi.org/10.1038/ngeo2695
- Shapiro G.I., Huthnance J.M., Ivanov V.V. Dense water cascading off the continental shelf // J. Geophys. Res. Oceans. 2003. V. 108(C12). https://doi.org/10.1029/2002JC001610
- Stein R., Fahl K. Holocene accumulation of organic carbon at the Laptev Sea continental margin (Arctic Ocean): sources, pathways, and sinks // Geo-Marine Letters. 2000. V. 20. № 1. P. 27–36.
- Sukhanova I.N., Flint M.V., Fedorov A.V. et al. Phytoplankton of the Khatanga Bay, shelf and continental slope of the western Laptev Sea // Oceanology. 2019. V. 59. № 5. P. 648–657. https://doi.org/10.1134/S0001437019050205
- Terhaar J., Kwiatkowski L., Bopp L. Emergent constraint on Arctic Ocean acidification in the twenty-first century // Nature. 2020. V. 582. P. 379–383. https://doi.org/10.1038/s41586-020-2360-3
- Thor P., Bailey A., Dupont S. et al. Contrasting physiological responses to future ocean acidification among Arctic copepod populations // Glob. Change Biol. 2018. V. 24. P. 365–377. https://doi.org/10.1111/gcb.13870
- Vonk J., Sánchez-García L., van Dongen B. et al. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia // Nature. 2012. V. 489. P. 137–140. https://doi.org/10.1038/nature11392
- Wang S., Nath D., Chen W. Nonstationary relationship between sea ice over Kara–Laptev seas during August–September and Ural blocking in the following winter // Intl. J. Climatol. 2021. V. 41. P. E1608–E1622. https://doi.org/10.1002/joc.6794
- Wanninkhof R. Relationship between wind speed and gas exchange over the ocean revisited // Limnol. Oceanogr. Methods. 2014. V. 12. № 6. P. 351–362.
- Zhang Y., Yamamoto-Kawai M., Williams W.J. Two decades of ocean acidification in the surface waters of the Beaufort Gyre, Arctic Ocean: Effects of sea ice melt and retreat from 1997–2016 // Geophys. Res. Lett. 2020. V. 47. e60119. https://doi.org/10.1029/2019GL086421
Дополнительные файлы
