Источники опреснения вод западной части Берингова моря по изотопным (δ18О, δD) данным

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

На основе изучения изотопных (δ18О, δD) характеристик и солености в 177 пробах морской воды проведена оценка изотопных параметров и источников опреснения субповерхностных, промежуточных и глубинных вод западной части Берингова моря. Показано, что субповерхностные, дихотермальные и, частично, промежуточные воды (<1000 м) опреснены атмосферными осадками региона. Для этих вод установлены уравнения связи изотопных параметров с соленостью:

δ18О = [0.39 ± 0.02]S – 13.52 ± 0.61 и δD = [3.1 ± 0.1]S – 107.0 ± 2.7.

Подстилающие их воды (1000–2500 м) также опреснены атмосферными осадками, но выпадающими южнее (≈ на 40–45° с. ш.). Наиболее глубинные воды (2800–4300 м) сохраняют сигнал, приобретенный при опреснении талыми водами антарктического ледникового льда. Вариации изотопных параметров с глубиной указывают на процесс вертикального перемешивания в интервале ≈1000–2500 м, которое должно влиять на распределение биогенных компонентов, кислорода и органики в водах западной части Берингова моря. Изотопные параметры вод, поступающих в галоклин Северного Ледовитого океана (S = 33.1) из Берингова моря, по нашим оценкам, составляют δ18О = –0.61‰ и δD = –5.4‰.

Полный текст

Доступ закрыт

Об авторах

Е. О. Дубинина

Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН

Email: elenadelta@gmail.com
Россия, Москва

С. А. Коссова

Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН

Email: elenadelta@gmail.com
Россия, Москва

А. А. Осадчиев

Институт океанологии им. П.П. Ширшова РАН

Email: elenadelta@gmail.com
Россия, Москва

Ю. Н. Чижова

Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН

Email: elenadelta@gmail.com
Россия, Москва

А. С. Авдеенко

Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН

Автор, ответственный за переписку.
Email: elenadelta@gmail.com
Россия, Москва

Список литературы

  1. Дубинина Е.О., Коссова С.А., Мирошников А.Ю., Кокрятская Н.М. Изотопная (δD, δ18O) систематика вод морей Арктического сектора России // Геохимия. 2017. № 11. С. 1041–1052.
  2. Дубинина Е.О., Коссова С.А., Мирошников А.Ю. Источники и механизмы опреснения морских вод в заливах Цивольки и Седова (Новая Земля) по изотопным (δD, δ18О) данным // Океанология. 2019. Т. 59. № 6. С. 928–938. https://doi.org/10.31857/S0030-1574596928-938
  3. Дубинина Е.О., Мирошников А.Ю., Коссова С.А., Щука С.А. Модификация опресненных вод на шельфе моря Лаптевых: связь изотопных параметров и солености // Геохимия. 2019. № 1. Р. 3–19. https://doi.org/10.31857/S0016-752564113-19
  4. Морозов Е.Г., Фрей Д.И., Кампос Э. Поток Антарктической донной воды в канале Вима. Обзор // Фундаментальная и прикладная гидрофизика. 2018. Т. 11. № 2. С. 94–102. https://doi.org/10.7868/S2073667318020089
  5. Пипко И.И., Пугач С.П., Савельева Н.И. и др. Карбонатные характеристики вод Анадырского залива // Доклады Академии Наук. 2019. Т. 487. № 3. С. 328–332. https://doi.org/10.31857/S0869-56524873328-332
  6. Aagaard K., Weingartner T.J., Danielson S.L. et al. Some controls on flow and salinity in Bering Strait // Geophys. Res. Lett. 2006. V. 33. L19602. https://doi.org/10.1029/2006GL026612
  7. Aagard K., Coachman L.K., Carmack E. On the halocline of the Arctic Ocean // Deep-Sea Res. 1981. V. 28A. № 6. P. 529–545.
  8. Aksenov Y., Karcher M., Proshutinsky A. et al. Arctic pathways of Pacific Water: Arctic Ocean Model Intercomparison experiments // J. Geophys. Res. Oceans. 2015. V. 121. P. 27–59. https://doi.org/10.1002/2015JC011299
  9. Alkire M.B., Morison J., Andersen R. Variability in the meteoric water, sea-ice melt, and Pacific water contributions to the central Arctic Ocean, 2000–2014 // J. Geophys. Res. Oceans. 2015. V. 120. P. 1573–1598. https://doi.org/10.1002/2014JC010023
  10. Alkire M.B., Jacobson A., Macdonald R.W. et al. Assessing the Contributions of Atmospheric/Meteoric Water and Sea Ice Meltwater and Their Influences on Geochemical Properties in Estuaries of the Canadian Arctic Archipelago // Estuaries and Coasts. 2019. V. 42. P. 1226–1248. https://doi.org/10.1007/s12237-019-00562-w
  11. Bauch D., Cherniavskaya E., Timokhov L. Shelf basin exchange along the Siberian continental margin: Modifi cation of Atlantic Water and Lower Halocline Water // Deep-Sea Res. I. 2016. V. 115. P. 188–198. https://doi.org/10.1016/j.dsr.2016.06.008
  12. Bauch D., Torres-Valdes S., Polyakov I. et al. Halocline water modifi cation and along-slope advection at the Laptev Sea continental margin // Ocean Sci. 2014. V. 10. P. 141–154. https://doi.org/10.5194/os-10-141-2014
  13. Behrensa M.K., Pahnkea K., Schnetgerb B. et al. Sources and processes affecting the distribution of dissolved Nd isotopes and concentrations in the West Pacific // Geochim. Cosmochim. Acta. 2018. V. 222. P. 508–534. https://doi.org/10.1016/j.gca.2017.11.008
  14. Belem A.L., Caricchio C., Albuquerque A.L. S. et al. Salinity and stable oxygen isotope relationship in the Southwestern Atlantic: constraints to paleoclimate reconstructions // An Acad Bras Cienc. 2019. V. 91. https://doi.org/10.1590/0001-3765201920180226
  15. Benetti M., Reverdin G., Aloisi G. et al. Stable isotopes in surface waters of the Atlantic Ocean: Indicators of ocean-atmosphere water fluxes and oceanic mixing processes // J. Geophys. Res. Oceans. 2017. V. 122. P. 4723–4742. https://doi.org/10.1002/2017JC012712
  16. Bostock H.C., Opdyke B.N., Williams M.J.M. Characterising the intermediate depth waters of the Pacific Ocean using δ13C and other geochemical tracers // Deep-Sea Res. I. 2010. V. 57. P. 847–859. https://doi.org/10.1016/j.dsr.2010.04.005
  17. Brown K.A., Holding J.M., Carmack E.C. Understanding Regional and Seasonal Variability Is Key to Gaining a Pan-Arctic Perspective on Arctic Ocean Freshening // Front. Mar. Sci. 2020. V. 7. P. 606. https://doi.org/10.3389/fmars.2020.00606
  18. Cooper L.W., Magen C., Grebmeier J.M. Changes in the oxygen isotope composition of the Bering Sea contribution to the Arctic Ocean are an independent measure of increasing freshwater fluxes through the Bering Strait // PLoSONE. 2022. V. 17. № 8. Р. e0273065. https://doi.org/10.1371/journal.pone.0273065
  19. Cooper L.W., Whitledge T.E., Grebmeier J.M. et al. The nutrient, salinity, and stable oxygen isotope composition of Bering and Chukchi Seas waters in and near the Bering Strait // J. Geophys. Res. 1997. V. 102. № C6. P. 12563–12573. https://doi.org/10.1029/97JC00015
  20. Craig H. Isotopic variations in meteoric waters // Science. 1961. V. 133. P. 1702–1703.
  21. Craig H., Gordon L.I. Deuteriem and oxygen 18 variations in the ocean and the marine atmosphere // In: Tongiorgi E. et al (Eds.) Proc. Stable Isotopes in Oceanographic Studies and Paleotemperatures, Spoleto, Italy. Pisa, 1965. P. 9–130.
  22. Danielson S.L., Eisner L.B., Ladd C.A. et al. A comparison between late summer 2012 and 2013 water masses, macronutrients, and phytoplankton standing crops in the northern Bering and Chukchi Seas // Deep Sea Research II: Topical Studies in Oceanography. 2017. V. 135. P. 7–26.
  23. Danielson S.L., Weingartner T. A, Hedstrom K.S. et al. Coupled wind-forced controls of the Bering – Chukchi shelf circulation and the Bering Strait throughflow: Ekman transport, continental shelf waves, and variations of the Pacific–Arctic sea surface height gradient // Prog. Oceanogr. 2014. dx. https://doi.org/10.1016/j.pocean.2014.04.006
  24. Ekwurzel B., Schlosser P., Mortlock R. et al. River runoff, sea ice meltwater, and Pacific water distribution and mean residence times in the Arctic Ocean // J. Geophys. Res. 2001. V. 106. P. 9075–9092. https://doi.org/10.1029/1999JC000024
  25. Frew R.D., Dennis P.F., Heywood K.J. et al. The oxygen isotope composition of water masses in the northern North Atlantic // Deep-Sea Res. I. 2000. V. 47. P. 2265–2286. https://doi.org/10.1016/S0967-0637(00)00023-6
  26. Frey D.I., Osadchiev A.A. Large river plumes detection by satellite altimetry: case study of the Ob-Yenisei plume // Remote Sensing. 2021. V. 13. 5014. https://doi.org/10.3390/rs13245014
  27. Friedman I., Redfield A.C., Schoen B. et al. The variation of the deuterium content of natural waters in the hydrologic cycle // Reviews of Geophysics. 1964. V. 2. Is. 1. P. 177–224. https://doi.org/10.1029/RG002i001p00177.
  28. Fuhr M., Laukert G., Yu Y. et al. Tracing Water Mass Mixing From the Equatorial to the North Pacific Ocean With Dissolved Neodymium Isotopes and Concentrations // Front. Mar. Sci. 2021. V. 7. P. 603761. https://doi.org/10.3389/fmars.2020.603761
  29. Graly J.A., Licht K.J., Kassab C.M. et al. Warm-based basal sediment entrainment and far-field Pleistocene origin evidenced in central Transantarctic blue ice through stable isotopes and internal structures. // Journal of Glaciology. 2018. V. 64. Is. 244. P. 185–196. https://doi.org/10.1017/jog.2018.4
  30. Grebmeier J.M., Cooper L.W., DeNiro M.J. Oxygen isotopic composition of bottom seawater and tunicate cellulose used as indicators of water masses in the northern Bering and Chukchi Seas. // Limnol. Oceanogr. 1990. V. 35. Is. 5. P. 1182–1195. https://doi.org/10.4319/lo.1990.35.5.1182
  31. Hennig A.N., Mucciarone D.A., Jacobs S.S. et al. Glacial Meltwater in the Southeast Amundsen Sea: A timeseries from 1994–2020 // EGUsphere [preprint] 2023. https://doi.org/10.5194/egusphere-2023-141
  32. Hirawake T., Oida J., Yamashita Y. et al. Water mass distribution in the northern Bering and southern Chukchi seas using light absorption of chromophoric dissolved organic matter // Progress in Oceanography. 2021. V. 197. https://doi.org/10.1016/j.pocean.2021.102641
  33. Johnson G.C., Stabeno P.J. Deep Bering Sea Circulation and Variability, 2001–2016, From Argo Data // J. Geophys. Res. Oceans. 2017. V. 122. https://doi.org/10.1002/2017JC013425
  34. Jones E.P., Anderson L.G., Swift J.H. Distribution of Atlantic and Pacific waters in the upper Arctic Ocean: Implications for circulation // Geophys. Res. Lett. 1998. V. 25. № 6. P. 765–768. https://doi.org/10.1029/98GL00464.
  35. Kawabe M., Fujio S. Pacific Ocean Circulation Based on Observation // Journal of Oceanography. 2010. V. 66. P. 389–403. https://doi.org/10.1007/s10872-010-0034-8.
  36. Kino K., Okazaki A., Cauquoin A. et al. Contribution of the Southern Annular Mode to variations in water isotopes of daily precipitation at Dome Fuji, East Antarctica // J. Geophys. Res.: Atmospheres. 2021. V. 126. e2021JD035397. https://doi.org/10.1029/2021JD035397
  37. Landais A., Barkan E., Vimeux F. et al. Combined Analysis of Water Stable Isotopes (H216O, H217O, H218O, HD16O) in Ice Cores // 2009. https://www.researchgate.net/publication/352052928
  38. Macdonald R.W., Harner T.T., Fyfe J. Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data // Science of the Total Environment. 2005. V. 342. P. 5–86.
  39. Masson V., Vimeux F., Jouzel J. et al. Holocene climate variability in Antarctica based on 11 ice-core isotopic records // Quaternary Research. 2000. V. 54. P. 348–358. https://doi.org/10.1006/qres.2000.2172
  40. Miura T., Suga T., Hanawa K. Numerical Study of Formation of Dichothermal Water in the Bering Sea // Journal of Oceanography. 2003. V. 59. P. 369–376.
  41. Miura T., Suga T., Hanawa K. Winter Mixed Layer and Formation of Dichothermal Water in the Bering Sea // Journal of Oceanography. 2002. V. 58. P. 815–823.
  42. Mizuta G., Ohshima K.I., Fukamachi Y. et al. Winter mixed layer and its yearly variability under sea ice in the southwestern part of the Sea of Okhotsk // Cont. Shelf Res. 2004. V. 24. P. 643–657.
  43. Nishioka J., Obata H., Hirawake T. et al. A review: iron and nutrient supply in the subarctic Pacific and its impact on phytoplankton production // J. Oceanogr. 2021. V. 77. P. 561–587. https://doi.org/10.1007/s10872-021-00606-5
  44. Nomura D., Abe H., Hirawake T. et al. Formation of dense shelf water associated with sea ice freezing in the Gulf of Anadyr estimated with oxygen isotopic ratios // Progress in Oceanography. 2021. V. 196. 102595. https://doi.org/10.1016/j.pocean.2021.102595
  45. Nomura D., Kawaguchi Y., Webb A. et al. Meltwater layer dynamics of a central Arctic lead: Effects of lead width variation and re-freezing and mixing events during late summer // Elem. Sci. Anth. 2023. V. 11. https://doi.org/10.1525/elementa.2022.00102.
  46. Oppo D.W., Fairbanks R.G. Variability in the deep and intermediate water circulation of the Atlantic Ocean during the past 25.000 years: Northern Hemisphere modulation of the Southern Ocean // Earth Planet. Sci. Lett. 1987. V. 86. P. 1–15. https://doi.org/10.1016/0012-821X(87)90183-X
  47. Osadchiev A., Sedakov R., Frey D. et al. Intense zonal freshwater transport in the Eurasian Arctic during ice-covered season revealed by in situ measurements // Scientific Reports. 2023. V. 13. 16508. https://doi.org/10.1038/s41598-023-43524-w
  48. Osadchiev A.A., Frey D.I., Spivak E.A. et al. Structure and inter-annual variability of the freshened surface layer in the Laptev and East-Siberian seas during ice-free periods // Front.Mar. Sci. 2021. V. 8. 735011. https://doi.org/10.3389/fmars.2021.735011
  49. Ostlund H.G., Hut G. Arctic Ocean Water Mass Balance From Isotope Data // J. Geophys. Res.. 1984. V. 89. P. 6373–6381.
  50. Rahmstorf S. Ocean circulation and climate during the past 120.000 years // Nature. 2002. V. 12. P. 207–214. https://doi.org/10.1038/nature01090
  51. Reid J.L. On the total geostrophic circulation of the pacific ocean: flow patterns, tracers, and transports // Prog. Oceanog. 1997. V. 39. P. 263–352. https://doi.org/10.1016/S0079-6611(97)00012-8
  52. Rudels B., Carmack E. Arctic Ocean Water Mass Structure and Circulation // Oceanography. 2022. V. 35. No. 3–4. P. 52–65. https://doi.org/10.5670/oceanog.2022.116
  53. Salmeron A.D., Takayanagi H., Wakaki S. et al. Characterization of water masses around the southern Ryukyu Islands based on isotopic compositions // Progress in Earth and Planetary Science. 2022. V. 9. https://doi.org/10.1186/s40645-022-00503-5
  54. Schlitzer R. Ocean Data View. Available online at: http://odv.awi.de (accessed October 29, 2020). 2020.
  55. Steele M., Morison J., Ermold W. et al. Circulation of summer Pacific halocline water in the Arctic Ocean // J. Geophys. Res. Oceans. 2004. V. 109. Is. C2. C02027. https://doi.org/10.1029/2003JC002009
  56. Stringer W.J., Groves J.E. Location and areal extent of polynyas in the Bering and Chukchi Seas // Arctic. 1991. V. 44. P. 164–171. https://doi.org/10.14430/arctic1583
  57. Talley L., Pickard G., Emery W. et al. Pacific Ocean // Descriptive Physical Oceanography. Elsevier, Boston, 2011. P. 303–362. https://doi.org/10.1016/B978-0-7506-4552-2.10010-1
  58. Taylor J.R., Falkner K.K., Schauer U. et al. Quantitative considerations of dissolved barium as a tracer in the Arctic Ocean // J. Geophys. Res. 2003. V. 108. Is. P. 12. https://doi.org/10.1029/2002JC001635
  59. Tazoe H., Obata H., Hara T. et al. Vertical Profiles of 226Ra and 228Ra Activity Concentrations in the Western Subarctic Gyre of the Pacific Ocean // Front. Mar. Sci. 2022. V. 9. P. 824862. https://doi.org/10.3389/fmars.2022.824862
  60. Voelker A.H.L., Colman A., Olack G. et al. Oxygen and hydrogen isotope signatures of Northeast Atlantic water masses // Deep-Sea Res. II. 2015. V. 116. P. 89–106. https://doi.org/10.1016/j.dsr2.2014.11.006.
  61. Wang Y., Liu N., Zhang Z. Sea Ice Reduction During Winter of 2017 Due to Oceanic Heat Supplied by Pacific Water in the Chukchi Sea, West Arctic Ocean // Front. Mar. Sci. 2021. V. 8. P. 650909. https://doi.org/10.3389/fmars.2021.650909
  62. Waterisotopes Database. http://waterisotopesDB.org. Accessed 2/25/2017
  63. Werner M., Jouzel J., Masson-Delmotte V. et al. Reconciling glacial Antarctic water stable isotopes with ice sheet topography and the isotopic paleothermometer // Nature Communications. 2018. V. 9. https://doi.org/10.1038/s41467-018-05430-y
  64. Woodgate R.A., Aagaard K., Swift J.H. et al. Pacific ventilation of the Arctic Ocean’s lower halocline by upwelling and diapycnal mixing over the continental margin // Geophys. Res. Lett. 2005. V. 32. P.L18609. https://doi.org/10.1029/2005GL023999
  65. Woodgate R.A., Peralta-Ferriz C. Warming and freshening of the Pacific inflow to the Arctic from 1990–2019 implying dramatic shoaling in Pacific Winter Water ventilation of the Arctic water column // Geophys. Res. Lett. 2021. 48, e2021GL092528. https://doi.org/10.1029/2021GL092528
  66. Yamamoto M., Tanaka N., Tsunogai S. Okhotsk Sea intermediate water formation deduced from oxygen isotope systematics // J. Geophys. Res. 2001. V. 106. № C12. P. 31075–31084.
  67. Yamamoto-Kawai M., McLaughlin F. A., Carmack E.C. et al. Freshwater budget of the Canada Basin, Arctic Ocean, from salinity, δ18O, and nutrients // J. Geophys. Res. 2008. V. 113. P. C01007. https://doi.org/10.1029/2006JC003858
  68. Yamashita Y., Yagi Y., Ueno H. et al. Characterization of the water masses in the shelf region of the Bering and Chukchi Seas with fluorescent organic matter // J. Geophys. Res. 2019. V. 124. P. 7545–7556. https://doi.org/10.1029/2019JC015476
  69. Yang J., Honjo S. Modeling the near-freezing dichothermal layer in the Sea of Okhotsk and its interannual variations // J. Geophys. Res. 1996. V. 101. No. C7. P. 16421–16433.
  70. Yang Y. Bai X. Summer changes in water mass characteristics and vertical thermohaline structure in the Eastern Chukchi Sea, 1974–2017 // Water. 2020. V. 12. P. 1434. https://doi.org/10.3390/w12051434
  71. Yao Y., Li T., Zhu X. et al. Characteristics of water masses and bio-optical properties of the Bering Sea shelf during 2007–2009 // Acta Oceanol. Sin. 2022. V. 41. No. 10. P. 140–153. https://doi.org/10.1007/s13131-022-2019-z

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Расположение станций, на которых были отобраны образцы вод западной части Берингова моря в ходе 82-го рейса НИС “Академик Лаврентьев” (июнь-июль 2018 г.). Районы: 1 – ПОЛ, 2 – КОМ. Течения – по работам [22, 30, 33, 43, 59].

Скачать (201KB)
3. Рис. 2. TS-диаграммы, построенные для образцов вод, отобранных в районах КОМ (а) и ПОЛ (б). Обозначения вод: BsSW – субповерхностные; DtW – дихотермальные; MtW – мезотермальные; BSSWt, b – промежуточные верхние и нижние, BSDW- глубинные воды Берингова моря.

Скачать (286KB)
4. Рис. 3. Вертикальное распределение солености (а), изотопного состава кислорода (б) и водорода (в) вод западной части Берингова моря.

Скачать (363KB)
5. Рис. 4. Распределение величин δ18О и δD в зависимости от солености: а – весь интервал значений солености; б – область солености, соответствующая дихотермальным водам. Обозначения вод: BsSW- субповерхностные; DtW- дихотермальные; MtW- мезотермальные; BSSWt, b- промежуточные верхние и нижние, BSDW- глубинные воды Берингова моря. Кружки – величины δ18О, ромбы – величины δD.

Скачать (193KB)
6. Рис. 5. Сравнение термохалинных характеристик промежуточных и глубинных вод Тихого океана и Берингова моря. Обозначения вод – см. текст.

Скачать (79KB)
7. Рис. 6. Изотопные характеристики промежуточных и глубинных вод западной части Берингова моря. Обозначения вод: MtW – мезотермальные; BSSWt, b – промежуточные верхние и нижние, BSDW – глубинные воды Берингова моря.

Скачать (124KB)
8. Рис. 7. Систематика изотопных параметров пресных компонентов (ПК), присутствующих в водах западной части Берингова моря на разной глубине (см. текст и табл. 1). Данные для атмосферных осадков (АО) региона приведены согласно [62]. ЛМВ – линия метеорных вод Крейга [20].

Скачать (103KB)

© Российская академия наук, 2024