Structure of the Earth's Crust and Tectonic Evolution of the Central Bengal Basin

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

A comprehensive analysis of geological and geophysical data characterizing the structure of the Central Bengal Basin (CBB) and its framing structures was carried out. For the first time, a submeridional section of the deep seismic sounding crossing the CBB was presented. It is found that the consolidated crust in the CBB has a complex block structure. The velocity characteristics of the basement and the gradient two-layer structure of the upper mantle unambiguously indicate that the basin was formed on continental rather than oceanic crust. The mechanism of the CBB basement sinking, the amplitude of which reaches 11 km, may be the compaction of the basic rocks of the lower part of the continental crust at its contact with the heated upper mantle and the transition of gabbroid rocks into eclogites with density of (3.6 g/cm3) which is higher than that of mantle peridotites (3.3 g/cm3). We conclude that the CBB, the 85° E Ridge, and the Bengal sector of the East Indian Ridge are relict fragments of the differentially submerged eastern part of the Indian paleocontinent.

全文:

受限制的访问

作者简介

V. Illarionov

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: vkillar@mail.ru
俄罗斯联邦, Moscow

O. Ganzha

Shirshov Institute of Oceanology of the Russian Academy of Sciences

Email: vkillar@mail.ru
俄罗斯联邦, Moscow

D. Ilyinsky

Shirshov Institute of Oceanology of the Russian Academy of Sciences

Email: vkillar@mail.ru
俄罗斯联邦, Moscow

K. Roginsky

Shirshov Institute of Oceanology of the Russian Academy of Sciences

Email: vkillar@mail.ru
俄罗斯联邦, Moscow

L. Fleifel

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: vkillar@mail.ru
俄罗斯联邦, Moscow

A. Borisova

Institute of Geological and Environmental Sciences

Email: vkillar@mail.ru
法国, Toulouse

参考

  1. Артюшков Е.В. Механизм образования глубоких впадин на континентах. Баренцевский прогиб // Докл. РАН. 2004. Т. 396. № 5. С. 644–649.
  2. Артюшков Е.В., Егоркин А.В. Физический механизм образования сверхглубоких осадочных бассейнов. Прикаспийская впадина// Докл. РАН. 2005. Т. 400. № 4. С. 494–499.
  3. Артюшков Е.В., Смирнов О.Е., Чехович П.А. Континентальная кора в западной части амеразийского бассейна. Механизм погружения // Геология и геофизика. 2021. Т. 62. № 7. С. 885–901.
  4. Илларионов В.К., Бойко А.Н., Удинцев Г.Б. Морфоструктура дна Бенгальского залива (Индийский океан), проблема его происхождения // Физика Земли. 2016. № 3. С. 50–67.
  5. Илларионов В.К., Ганжа О.Ю., Ильинский Д.А. и др. Природа земной коры южной части Бенгальского залива и прилегающей части Центральной котловины (Индийский океан) // Геофизические процессы и биосфера. 2022. Т. 21. № 3. С. 75–97.
  6. Илларионов В.К., Ганжа О.Ю., Ильинский Д.А. и др. Новые представления о строении и природе коры западной части Бенгальского залива по данным глубинной сейсмики // Океанология. 2024. Т. 64. № 3. С. 526–541.
  7. Непрочнов Ю.П., Ганжа О.Ю., Ильин И.А. Методика обработки и интерпретации записей донных сейсмографов при глубинном сейсмическом зондировании в океане // Океанология. 2005. Т. 45. № 3. С. 458–467.
  8. Павленкова Н.И. Структурные особенности литосферы континентов и океанов и их природа // Геофизический журнал. 2019. Т. 41. № 2. С. 3–57.
  9. Рудич Е.М. Движущиеся материки и эволюция океанического ложа. М.: Недра, 1983. 272 с.
  10. Bandyopadhyay S. Evolution of the Ganga Brahmaputra Delta: A Review // Geographical Review of India. 2007. V. 69. P. 235–268.
  11. Borisova A.Y. Subalkaline series of the Afanasij Nikitin Seamount, Indian Ocean: Magma genesis and secondary alterations of basalts // Geochemistry International. 2001. V. 39. P. 123–135.
  12. Borisova A.Y., Belyatsky B.V., Portnyagin M.V., Sushchevskaya N.M. Petrogenesis of Olivine-phyric Basalts from the Aphanasey Nikitin Rise: Evidence for Contamination by Cratonic Lower Continental Crust // J. of Petrology. 2001. V. 42. P. 277–319.
  13. Borisova A.Y., Faure F., Deloule E. et al. Lead isotope signatures of Kerguelen plume-derived olivine-hosted melt inclusions: Constraints on the ocean island basalt petrogenesis // Lithos. 2014. V. 198. P. 153–171.
  14. Borisova A.Y., Bohrson W.A., Grégoire M. Origin of primitive ocean island basalts by crustal gabbro assimilation and multiple recharges of plume‐derived melts // Geochemistry, Geophysics, Geosystems. 2017. V. 18. P. 2701–2716.
  15. Brune J.N., Singh D.D. Continent-like crustal thickness beneath the Bay Bengal sediments // Bull. Seismol. Soc. Am. 1986. V. 76. № 1. P. 191–203.
  16. Curiale J.A., Covington G.H., Shamsuddin A.H.M. et al. Origin of petroleum in Bangladesh // AAPG Bulletin. 2002. V. 86. № 4. P. 625–652.
  17. Curray J.R., Emmel F.J., More D.G., Raitt R.W. Structure, tectonics and geological history of the northeastern Indian Ocean // Ocean Basins and Margins. 1982. V. 6. P. 399–450.
  18. Dubey C.P., Tiwari V.M. Lithospheric-mantle modification beneath the thick sedimentary fan of Bay of Bengal: Inference from the 3D gravity model // Tectonophysics. 2022. V. 826. P. 1–14.
  19. Frey F.A., Weis D., Borisova A.Y., Xu G. Involvement of continental crust in the formation of the Cretaceous Kerguelen Plateau: New perspectives from ODP Leg 120 sites // J. of Petrology. 2002. V. 43. P. 1207–1239.
  20. Gorain S., Sachdeva H. Mystery beneath the 85 E Ridge // 12th Biennial Int. Conf. Expo. SPG-India, Jaipur, 2017.
  21. Gupta P., Rathore S.S., Raza S. et al. Isotopic and Geochemical Evidences from 85 E Ridge: Implications on Kerguelen Hotspot Linkage // 11th Biennial International Conference & Exposition. JAIPUR–2015.
  22. Ismaiel M., Krishna K.S., Srinivas K. et al. Internal structure of the 85 E Ridge, Bay of Bengal: Evidence for multiphase volcanism // Marine and Petroleum Geology. 2017. V. 80. P. 254–264.
  23. Ismaiel M., Krishna K. The 24 August 2021 Mw 5.1 Earthquake, 320 km northeast of Chennai, India: Brittle Rupture of a Fault Line // Current Science. 2021. V. 121. P. 1005–1006.
  24. Kent R.W., Pringle M.S., Müller R.D. et al. 40Ar/39Ar geochronology of the Rajmahal basalts, India, and their relationship to the Kerguelen Plateau // Journal of Petrology. 2002. V. 43. P. 1141–1153.
  25. Krishna K.S., Ismaiel M., Srinivas K. et al. Sediment pathways and emergence of Himalayan source material in the Bay of Bengal // Current Science. 2016. V. 110. P. 363–371.
  26. Krishna K.S., Ismaiel M., Srinivas K. Oceanic rocks beneath the landmass and continental rocks below the ocean – geological complexities in Indian waters // Current Science. 2020. V. 119. P. 896–898.
  27. Laju M., Krishna K.S. Dating of the 85 E Ridge (northeastern Indian Ocean) using marine magnetic anomalies // Current Science. 2021. V. 100. P. 1314–1322.
  28. Mooney W.D., Kaban M.K. The North American upper mantle: Density, composition, and evolution // J. Geophys. Res. Solid Earth. 2010. V. 115. P. 1–24.
  29. Naini B.R., Leyden R. Ganges Cone: A Wide-Angle Seismic Reflection and Refraction Study // J. Geophys. Res. 1973. V. 78. № 35. P. 8711–8720.
  30. Pateria M.L., Rangaraju M.K., Raiverman V. A Note on the Structure and Stratigraphy of Bay of Bengal Sediments // Geological survey of India. Special publication. 1992. № 29. P. 21–23.
  31. Peirce J.W. The northward motion of India since the late Cretaceous // Geophys. J.R. Astron. Soc. 1978. V. 52. P. 277–311.
  32. Rao D.G, Krishna K.S., Sar D. Crustal evolution and sedimentation history of the Bay of Bengal since the Cretaceous // J. Geophys. Res. 1997. V. 102. № B8. P. 17747–17768.
  33. Radhakrishna M., Subrahmanyam C., Damodharan T. Thin oceanic crust below Bay of Bengal inferred from 3D-gravity interpretation // Tectonophysics. 2010. V. 493. P. 93–105.
  34. Sandwell D.T. New global marine gravity map/grid based on stacked ERS1, Geosat and Topex altimetry // EOS Transactions, American Geophysical Union. 1994. V. 75. № 16. P. 321.
  35. Shang L., Hu G., Pan J. et al. Hotspot volcanism along a leaky fracture zone contributes the formation of the 85 E Ridge at 11 N latitude, Bay of Bengal // Tectonophysics. 2022. V. 837. P. 1–14.
  36. Sibuet J.-C., Klingelhoefer F., Huang Y.-P. et al. Thinned continental crust intruded by volcanics beneath the northern Bay of Bengal // Marine Petroleum Geology. 2016. V. 77. P. 471–486.
  37. Talwani M., Krishna K.S., Ismaiel M., Desa M.A. Comment on a paper by Sibuet et al. entitled “Thinned continental crust intruded by volcanics beneath the northern Bay of Bengal” // Marine and Petroleum Geology. 2016. V. 88. P. 1123–1125.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Depth map of the acoustic basement of the BR, isohypses, km ([4] with ext.). The map shows the main structural-tectonic taxa of the basement of the BR and the scheme of geological and geophysical study of its central part. I - structural-tectonic taxa of the first order: 1 - Central Bengal Basin, 2 - 85° E. Ridge, 3 - East Indian Ridge, 4 - Jessor Depression, 5 - Western Basin, 6 - East Indian Plateau, 7 - "structural shaft", 8 - South Sri Lankan Basin; II - seismoacoustic beacons, in the numerator is the velocity of seismic waves in the basement, in the denominator - the depth of occurrence of its roof [29]; III - CDP profiles: MAN1, MAN3 (MV Sagar Sandhani, [30]), SK 107-07 (ORV Sagar Kanya, [27]), MCS-I (IS Haiyandichi-9, R.V. Haiyangdizhi-9, 2019 [35]), GSZ profiles M3, M4 (NIS Mezen, 2003); IV - GSZ profiles 2, 5, 11 [36]; V - deep-water drilling wells of the DSDP project; VI - well of the IODP-1444 project; VII - industrial drilling wells; VIII - epicentres of modern earthquakes [23].

下载 (617KB)
3. Fig. 2. Regional latitudinal DOM-OGT transects (a-c) characterising the seafloor structure of the Bay of Bengal. The vertical scale gives the double travelling time of the reflected wave. See Fig. 1 for the position of the profiles. Notation: WB - Western Basin; 85°E - 85°E Ridge; CBB - Central Bengal Basin; EIH - East Indian Ridge; jagged line - oceanic basement, according to [32].

下载 (455KB)
4. Fig. 3. Gravimetric map of the BR in the Bouguer reduction [by 33 (c supplementary)]. Numbers in circles: 1 - Central Bengal Basin, 2 - East India Ridge, 3 - 85°E ridge. Dotted lines indicate CDP profiles; solid lines are GSS profiles: M-1, M-2, M-3, M-4, M-5 (NIS ‘Mezen’); GSZ profiles: Pr-2, Pr-5, Pr-11 [36].

下载 (574KB)
5. Fig. 4. Buried carbonate bank at the top of the Ridge 85°E [20].

下载 (166KB)
6. Fig. 5. Denuded surface of one of the hill blocks of the 85°E ridge, on which fragments of carbonate sediments are preserved [20].

下载 (671KB)
7. Fig. 6. a - Graph of the gravity anomaly with reduction in free air [34]. The alternation of maxima and minima of the curve are well correlated with the block structure of the consolidated crust; b - depth velocity model of the Central Bengal Basin based on the GSZ M-3 profile. The profile position see Fig. 1. Solid lines - boundaries plotted along the refractive sites 1-D of the velocity columns. Black figures - velocity at the roof of the layer. Red figures - velocity at the bottom of the layer. Vertical dashed lines - block boundaries plotted by the change of velocities at the roof and bottom of the layer. Dashed line - assumed continuation of M2 boundary. LCL - lower crustal layer with anomalously high velocity.

下载 (572KB)
8. Fig. 7. Latitudinal geological-geophysical section constructed taking into account GSZ data migrated to the time domain and DOM-OGT. The section along profile SK 107-07 is taken as a reference section: 1 - water layer; 2 - sedimentary layer; 3 - volcanogenic-sedimentary layer; 4 - basement composed of continental crust; 5 - Moho M1; 6 - Moho M2.

下载 (323KB)

版权所有 © Russian academy of sciences, 2025