The formation of the modern structure of the american-antarctic ridge
- 作者: Bogoliubskii V.A.1,2, Dubinin E.P.1,2, Grokholsky A.L.1
-
隶属关系:
- Lomonosov Moscow State University, The Earth Science Museum
- Lomonosov Moscow State University, Faculty of Geology
- 期: 卷 65, 编号 4 (2025)
- 页面: 681-693
- 栏目: Морская геология
- URL: https://journals.eco-vector.com/0030-1574/article/view/692410
- DOI: https://doi.org/10.31857/S0030157425040132
- ID: 692410
如何引用文章
详细
The American-Antarctic Ridge is located between Bouvet Triple Junction and South Sandwich subduction zone. It is dissected by well pronounced transform faults. The common length of transform faults exceeds the common length of spreading segments. This structure was developed as a result of extension direction change during the subduction zone reshaping ca. 20 My. Basing on physical modelling we have reconstructed the conditions and the structural transformations during formation of the modern structural pattern of the American-Antarctic Ridge. In the experiment, oblique spreading segments through local ridge axis jumps became orthogonal. In that time, transverse discontinuities increased their length owing to reduction of oblique spreading segments and merging of several pre-existing transverse discontinuities. Perhaps, similar transformations could be observed during the modern structure formation of the American-Antarctic Ridge. In the western part, oblique to suborthogonal spreading segment transition has finished, while in the eastern part, structural pattern preserves as oblique as suborthogonal spreading segments. This situation may be determined by the influence of Shona and Bouvet mantle plume thermal anomalies. Thus, at the moment in the eastern part spreading and transform structures continue reshaping, and the structural pattern of the western part is stable.
作者简介
V. Bogoliubskii
Lomonosov Moscow State University, The Earth Science Museum; Lomonosov Moscow State University, Faculty of Geology
Email: bogolubskiyv@gmail.com
Moscow, Russia; Moscow, Russia
E. Dubinin
Lomonosov Moscow State University, The Earth Science Museum; Lomonosov Moscow State University, Faculty of GeologyMoscow, Russia; Moscow, Russia
A. Grokholsky
Lomonosov Moscow State University, The Earth Science MuseumMoscow, Russia
参考
- Боголюбский В.А., Дубинин Е.П., Грохольский А.Л. Трансформные и нетрансформные смещения западной части Юго-Западного Индийского хребта // Геотектоника. 2025. № 1. С. 104–124. https://doi.org/10.31857/S0016853X25010068
- Булычев А.А., Гилод Д.А. Двумерное гравитационное моделирование тектоносферы акватории Американо-Антарктического хребта // Вестн. Моск. Ун-та. Сер. 4. Геология. 2009. № 5. С. 36–48.
- Булычев А.А., Гилод Д.А., Верещагина М.И. Структурный анализ гравитационного поля Американо-Антарктического хребта // Вестн. Моск. ун-та. Сер. 4. Геология. 2008. № 5. С. 27–32.
- Грохольский А.Л., Дубинин Е.П. Структурообразование в рифтовых зонах и поперечных смещениях осей спрединга по результатам физического моделирования // Физика Земли. 2010. № 5. С. 49–55.
- Грохольский А.Л., Дубинин Е.П. Экспериментальное моделирование структурообразующих деформаций в рифтовых зонах срединно-океанических хребтов // Геотектоника. 2006. № 1. С. 76–94.
- Дубинин Е.П., Сущевская Н.М., Грохольский А.Л. История развития спрединговых хребтов Южной Атлантики и пространственно-временное положение тройного сочленения Буве // Российский журнал наук о Земле. 1999. Т. 1. № 5. С. 423–443.
- Кохан А.В. Тектоника и геодинамика ультрамедленных спрединговых хребтов: дисс. … канд. геол.-минерал. наук: 25.00.03. М., 2012. 242 с.
- Крымский Р.Ш., Сущевская Н.М., Беляцкий Б.В., Мигдисова Н.А. Особенности изотопного состава осмия базальтовых стекол западного окончания Юго-Западного Индийского хребта // Докл. РАН. 2009. Т. 428. № 1. С. 87–92.
- Пейве А.А. Структурно-вещественные неоднородности, магматизм и геодинамические особенности Атлантического океана. М.: Научный мир, 2002. 278 с.
- Трухин В.И., Багин В.И., Жиляева В.А. и др. Магнетизм крайнего восточного звена срединного Американо-Антарктического хребта // Физика Земли. 2000. № 6. С. 26–34.
- Шеменда А.И. Критерии подобия при механическом моделировании тектонических процессов // Геология и геофизика. 1983. № 10. С. 10–19.
- Abelson M., Agnon A. Mechanics of oblique spreading and ridge segmentation // Earth and Planetary Science Letters. 1997. V. 148. Iss. 3–4. P. 405–421. https://doi.org/10.1016/S0012-821X(97)00054-X
- Barker P.F., Barber P.L., King E.C. An early Miocene ridge crest-trench collision on the South Scotia Ridge near 36 W // Tectonophysics. 1984. V. 102. Iss. 1–4. P. 315–332. https://doi.org/10.1016/0040-1951(84)90019-2
- Barker P.F., Lawver L.A. South American-Antarctic plate motion over the past 50 Myr, and the evolution of the South American-Antarctic ridge // Geophysical Journal. 1988. V. 94. P. 377–386. https://doi.org/10.1111/j.1365-246X.1988.tb02261.x
- Blackman D.K., Appelgate B., German C.R. et al. Axial Morphology along the Southern Chile Rise // Marine Geology. 2012. V. 315–318. P. 58–63. https://doi.org/10.1016/j.margeo.2012.06.001
- DeMets C., Gordon R.G., Argus D.F. Geologically current plate motions // Geophysical Journal International. 2010. V. 181. Iss. 1. P. 1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x
- Ghidella M.E., Yáñez G., LaBrecque J.L. Revised tectonic implications for the magnetic anomalies of the western Weddell Sea // Tectonophysics. 2002. V. 347. Iss. 1–2. P. 65–86. https://doi.org/10.1016/S0040-1951(01)00238-4
- Gregory E.P.M., Singh S.C., Marjanović M., Wang Z. Serpentinized peridotite versus thick mafic crust at the Romanche oceanic transform fault // Geology. 2021. V. 49 (9). P. 1132–1136 https://doi.org/10.1130/G49097.1
- Howell S., Ito G., Behn M. et al. Magmatic and tectonic extension at the Chile Ridge: Evidence for mantle controls on ridge segmentation // Geochem. Geophys. Geosyst. 2016. V. 17. P. 2354–2373. https://doi.org/10.1002/2016GC006380
- King E.C., Livermore R.A., Storey B.C. Weddell Sea tectonics and Gondwana break-up: an introduction // Geological Society Special Publication. No 108. P. 1–10. https://doi.org/10.1144/GSL.SP.1996.108.01.01
- Kovacs L.C., Morris P., Brozena J., Tikku A. Seafloor spreading in the Weddell Sea from magnetic and gravity data // Tectonophysics. 2002. V. 347. Iss. 1–3. P. 43–64. https://doi.org/10.1016/S0040–1951(01)00237-2
- König N., Jokat W. The Mesozoic breakup of the Weddell Sea // Journal of Geophysical Research. 2006. V. 11. Iss. B12. B12102. https://doi.org/10.1029/2005JB004035
- LaBrecque J.L., Barker P.F. Age of the Weddell Basin // Nature. 1981. V. 290. P. 489–492 https://doi.org/10.1038/290489a0
- LaBrecque J.L., Ghidella M.E. Bathymetry, depth to magnetic basement, and sediment thickness estimates from aerogeophysical data over the western Weddell Basin // Journal of Geophysical Research. 1997. V. 102 (B4). P. 7929–7945. https://doi.org/10.1029/96JB01264
- Lawver L.A., Dick H.J.B. The American-Antarctic Ridge // Journal of Geophysical Research. 1983. V. 88. No. B10. P. 8193–8202. https://doi.org/10.1029/JB088iB10p08193
- Le Roex A.P., Dick H.J.B., Reid A.M. et al. Petrology and geochemistry of basalts from the American-Antarctic Ridge, Southern implications for the westward influence of the Bouvet mantle plume // Contrib. Mineral. Petrol. 1985. V. 90. P. 367–380. https://doi.org/10.1007/BF00384715.
- Ligi M., Bonatti E., Bortoluzzi G. et al. Bouvet Triple Junction in the South Atlantic: Geology and evolution // Journal of Geophysical Research. 1999. V. 104. No. B12. P. 29365–29385. https://doi.org/10.1029/1999JB900192
- Livermore R.A., Hunter R.J. Mesozoic seafloor spreading in the Southern Weddell Sea // Weddell Sea Tectonics and Gondwana Break-up / Storey B.C., King E.C., Livermore R.A. (eds.). Geol. Soc., London, 1996. V. 108. P. 227–241. https://doi.org/10.1144/GSL.SP.1996.108.01.17
- Livermore R.A., Tomlinson J.S., Woollett R.W. Unusual sea-floor fabric near the Bullard fracture zone imaged by GLORIA sidescan sonar // Nature. 1991. V. 353. P. 158–161. https://doi.org/10.1038/353158a0
- Livermore R.A., Woollett R.W. Seafloor spreading in the Weddell Sea and southwest Atlantic since the Late Cretaceous // Earth and Planetary Science Letters. 1993. V. 117. Iss. 3–4. P. 475–495. https://doi.org/10.1016/0012-821X(93)90098-T
- Meyer B., Saltus R., Chulliat A. EMAG2v3: Earth Magnetic Anomaly Grid (2-arc-minute resolution). 2017. Version 3. NOAA National Centers for Environmental Information. https://doi.org/10.7289/V5H70CVX. Accessed 01.10.2022
- Mitchell N.C., Livermore R.A., Fabretti P., Carrara G. The Bouvet triple junction, 20 to 10 Ma, and extensive transtensional deformation adjacent to the Bouvet and Conrad transforms // J. of Geophys. Res. 2000. V. 105 (B4). P. 8279–8296. https://doi.org/10.1029/1999JB900399
- Mueller C.O., Jokat W. The initial Gondwana break-up: A synthesis based on new potential field data of the Africa-Antarctica Corridor // Tectonophysics. 2019. V. 750. P. 301–328. https://doi.org/10.1016/J.TECTO.2018.11.008
- Ryan W.B.F., Carbotte S.M., Coplan J. et al. Global Multi-Resolution Topography (GMRT) synthesis data set // Geochem. Geophys. Geosyst. 2009. V. 10. P. Q03014. https://doi.org/10.1029/2008GC002332
- Sandwell D.T., Müller R.D., Smith W.H.F. et al. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure // Science. 2014. V. 346. No. 6205. P. 65–67. https://doi.org/10.1126/science.1258213
- Schreider A.A., Schreider Al.A., Bulychev A.A. et al. Geochronology of the American–Antarctic Ridge // Oceanology. 2006. V. 46. No. 1. P. 114–122. https://doi.org/10.1134/S0001437006010139
- Sclater J.G., Grindlay N.R., Madsen J.A., Rommevaux-Jestin C. Tectonic interpretation of the andrew Bain transform fault: Southwest Indian Ocean // Geochem., Geophys., Geosyst. 2005. V. 6. No. 9. P. Q09K10. https://doi.org/10.1029/2005GC000951
- Shemenda A.I., Grokholsky A.L. A formation and evolution of overlapping spreading centers (constrained on the basis of physical modelling) // Tectonophysics. 1991. V. 199. P. 389–404 https://doi.org/10.1016/0040–1951(91)90180-Z.
- Shemenda A.I., Grocholsky A.L. Physical modeling of slow seafloor spreading // J. Geophys. Res. 1994. V. 99. P. 9137–9153. https://doi.org/10.1029/93JB02995
- Skolotnev S.G., Sanfilippo A., Peyve A.A. et al. Geological and Geophysical Studies of the Charlie Gibbs Fracture Zone (North Atlantic) // Doklady Earth Sciences. 2021. V. 497. Part 1. P. 191–194. https://doi.org/10.1134/S1028334X21030107
- Tebbens S.F., Cande S.C. Southeast Pacific tectonic evolution from early Oligocene to Present // J. of Geophys. Res. 1997. V. 102 (B6). P. 12061–12084. https://doi.org/10.1029/96JB02582
- Tebbens S.F., Cande S.C., Kovacs L. et al. The Chile ridge: A tectonic framework // J. of Geophys. Res. 1997. V. 102 (B6). P. 12035–12059. https://doi.org/10.1029/96JB02581
- van de Lagemaat S.H.A., Swart M.L.A., Vaes B. et al. Subduction initiation in the Scotia Sea region and opening of the Drake Passage: When and why? // Earth-Science Reviews. 2021. V. 215. P. 103551. https://doi.org/10.1016/j.earscirev.2021.103551
补充文件
