Assessment of clay and humus content in soils using the dielectric method

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper presents the results of measuring the content of clay, humus, and complex permittivity of 23 soil samples in the frequency range from 10 kHz to 8–10 GHz at different moisture. The content of clay (particles smaller than 0.01 mm) in the samples varied from 1.7 to 47.5%, the humus content – from 0.7 to 8%. The processes of dielectric relaxation were studied, correlations between the process parameters and the clay content were found. To estimate the clay content, the intensity of the low-frequency relaxation process and the complex permittivity at a frequency of 100 kHz, measured in a state close to complete capillary saturation, were used. The square of the correlation coefficient of the found average values with those measured by the sedimentation method was 0.89, the average deviation was – 14% with a maximum deviation of 50–60% for two soil samples. In order to estimate the humus content, the values of clay and the maximum amount of bound water found by the dielectric method were used. The maximum amount of bound water was determined by modeling the dielectric spectra using the relaxation-refraction model as the average of the values found at different moisture of the soil samples. The square of the correlation coefficient of the found values with those measured by the Walkley–Black acid digestion method was 0.72, the average deviation was 28% with a maximum deviation of 200% for one soil sample. The reasons for the high errors were discussed.

作者简介

P. Bobrov

Omsk State Pedagogical University

编辑信件的主要联系方式.
Email: bobrov@omgpu.ru
ORCID iD: 0000-0001-9744-8255
俄罗斯联邦, Omsk, 644099

T. Belyaeva

Omsk State Pedagogical University

Email: bobrov@omgpu.ru
俄罗斯联邦, Omsk, 644099

E. Kroshka

Omsk State Pedagogical University

Email: bobrov@omgpu.ru
俄罗斯联邦, Omsk, 644099

O. Rodionova

Omsk State Pedagogical University

Email: bobrov@omgpu.ru
俄罗斯联邦, Omsk, 644099

参考

  1. Безуглова О.С., Горбов С.Н., Карпушова А.В., Тагивердиев С.С. Сравнительная характеристика методов определения органического углерода в почвах // Фундам. исслед. 2014. № 8. С. 1576–1580.
  2. Беляева Т.А., Бобров А.П., Бобров П.П., Галеев О.В., Мандрыгина В.Н. Определение параметров моделей диэлектрической проницаемости почв с различной плотностью и различным содержанием гумуса по данным экспериментальных измерений в частотном диапазоне 0.1–20 ГГц // Исследование Земли из космоса. 2003. № 5. 28–34.
  3. Бобров П.П., Беляева Т.А., Крошка Е.С., Родионова О.В. Диэлектрические свойства частиц речного песка в зависимости от их размеров и наличия глинистых примесей // Известия вузов. Сер. Физика. 2023. № 8. С. 91–100. https://www.elibrary.ru/item.asp?id=54478009
  4. Бобров П.П., Беляева Т.А., Крошка Е.С., Родионова О.В. Определение влажности образцов почв диэлектрическим методом // Почвоведение. 2019. № 7. С. 859–871. https://doi.org/10.1134/S0032180X19050034
  5. Бобров П.П., Беляева Т.А., Крошка Е.С., Родионова О.В. Использование моделей диэлектрических смесей для оценки содержания глины в сухих почвах // Техника радиосвязи. 2023. Вып. 4. С 79–90.
  6. Бобров П.П., Миронов В.Л., Ивченко О.А., Красноухова В.Н. Спектроскопическая модель диэлектрической проницаемости почв, использующая стандартизованные агрофизические показатели // Исследование Земли из космоса. 2008. № 1. С. 15–23.
  7. Ганжара Н.Ф. Практикум по почвоведению М.: Агроконсалт, 2002. 280 с.
  8. Гуркова Е.А., Соколов Д.А. Влияние гранулометрического состава на гумусонакопление в почвах сухих степей Тувы // Почвоведение. 2022. № 1. С. 106–118. https://doi.org/10.31857/S0032180X22010063
  9. Каравайский А.Ю., Лукин Ю.И. Влияние органического вещества и влажности на пересечение спектров диэлектрической проницаемости почв // Журнал радиоэлектроники. 2024. № 4. С. 1684–1719. https://doi.org/10.30898/1684-1719.2024.4.11
  10. Федотов Г.Н., Шеин Е.В., Путляев В.И, Архангелъская Т.А., Елисеев А.В., Милановский Е.Ю. Физико-химические основы различий седиментометрического и лазерно-дифракционного методов определения гранулометрического состава почв // Почвоведение. 2007. № 3. С. 310–317.
  11. Чинилин А.В., Виндекер Г.В., Савин И.Ю. Vis-NIR спектроскопия для целей оценки содержания органического углерода почв (метаанализ) // Почвоведение. 2023. № 11. С. 1357–1370. https://doi.org/10.31857/S0032180X23600695
  12. Шамрикова Е.В., Ванчикова Е.В., Кондратёнок Б.М, Лаптева Е.М., Кострова С.Н. Проблемы и ограничения дихроматометрического метода измерения содержания почвенного органического вещества (обзор) // Почвоведение. 2022. № 7. С. 787–794. https://doi.org/10.31857/S0032180X22070097
  13. Шеин Е.В., Милановский Е.Ю., Молов А.З. Гранулометрический состав: роль органического вещества в различиях данных седиментометрического и лазернодифрактометрического методов // Доклады по экологическому почвоведению. 2006. № 1. С. 17–30.
  14. Шеин Е.В. Гранулометрический состав почв: проблемы методов исследования. интерпретации результатов и классификации // Почвоведение. 2009. № 3. С. 309–317.
  15. Юдина А.В. Лазерная дифрактометрия в почвоведении: методические аспекты и диагностическое значение. Дис. … канд. биол. наук. М., 2018. 251 с.
  16. Юдина А.В., Фоминa Д.С., Валдес-Коровкинa И.А. и др. Пути создания классификации почв по гранулометрическому составу на основе метода лазерной дифракции // Почвоведение. 2020. № 11. С. 1353–1371. https://doi.org/10.31857/S0032180X20110143
  17. Юдина А.В., Милановский Е.Ю. Микроагрегатный анализ почв методом лазерной дифракции: особенности пробоподготовки и интерпретации результатов // Бюл. Почв. ин-та им. В.В. Докучаева. 2017. № 89. С. 3–20. https://doi.org/10.19047/0136-1694-2017-89-3-20
  18. Apesteguia M., Plante A.F., Virto I. Methods Assessment for Organic and Inorganic Carbon Quantification in Calcareous Soils of the Mediterranean Region // Geoderma Reg. 2018. V. 12. P. 39–48. https://doi.org/10.1016/j.geodrs.2017.12.001
  19. Arcone S. A., Boitnott G. E. Maxwell-Wagner relaxation in common minerals and a desert soil at low water contents // J. Appl. Geophys. 2012. V. 81, P. 97–105. https://doi.org/10.1016/j.jappgeo.2011.09.005
  20. Bai Z., Xie M., Hu B., Luo D., Wan C., Peng J., Shi Z. Estimation of soil organic carbon using Vis-NIR spectral data and spectral feature bands selection in Southern Xinjiang, China // Sensors (Basel). 2022. V. 22. № 16. P. 6124. https://doi.org/10.3390/s22166124
  21. Beuselinck L., Govers G., Poesen J., Degraer G., Froyen L. Grain-size analysis by laser diffractometry: comparison with the sieve-pipette method // Catena. 1998. V. 32. № 3–4. P. 193–208. https://doi.org/10.1016/S0341-8162(98)00051-4
  22. Bobrov P.P., Belyaeva Т.A., Kroshka E.S., Rodionova O.V. The effect of dielectric relaxation processes on the complex dielectric permittivity of soils at frequencies from 10 kHz to 8 GHz – Part I: Experimental // IEEE Trans. Geosci. Remote Sens. 2022. V. 60. P. 2005409. https://doi.org/10.1109/TGRS. 2022.3180727
  23. Bobrov P.P., Galeyev O.W. Observed effects of soil humus & salt contents on the microwave emissivity of soils // Proc. 2001 IEEE Geoscience and Remote Sensing Symposium. Sydney, NSW, 2001. P. 2085–2087. https://doi.org/10.1109/IGARSS. 2001.977911
  24. Bobrov P.P., Kroshka E.S., Muzalevskiy K.V. The Effect of Dielectric Relaxation Processes on the Complex Dielectric Permittivity of Soils at Frequencies from 10 kHz to 8 GHz – Part II: Broadband Analysis // IEEE Trans. Geosci. Remote Sens. 2024. T. 62. P. 2000411. https://doi.org/10.1109/TGRS. 2023.3340693
  25. Bobrov P.P., Mironov V.L., Kondratyeva O.V. Repin A.V. The effect of clay and organic matter content on the dielectric permittivity of soils and grounds at the frequency range from 10 MHz to 1 GHz // Proc. 2010 IEEE Int. Geosci. Remote Sens. Symp. July 25, 2010. Honolulu. 2010. P. 4433–4435. https://doi.org/10.1109/IGARSS. 2010.5652152
  26. Bobrov P.P., Repin A.V., Rodionova O.V. Wideband Frequency Domain Method of Soil Dielectric Properties Measurements // IEEE Trans. Geosci. Remote Sens. 2015. V. 53. Р. 2366–2372. https://doi.org/10.1109/TGRS. 2014.2359092
  27. Chang C.-W., Laird D.A., Mausbach M.J., Hurburgh C.R. Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties // Soil Sci. Soc. Am. J. 2001. V. 65. P. 480–490. https://doi.org/10.2136/sssaj2001.652480x
  28. Chen Y., Or D. Effects of Maxwell-Wagner polarization on soil complex dielectric permittivity under variable temperature and electrical conductivity // Water Resources Research. 2006. V. 42. P. W06424. https://doi.org/10.1029/2005WR004590
  29. Dur J.C., Elsass F., Chaplain V., Tessier D. The relationship between particle-size distribution by laser granulometry and image analysis by transmission electron microscopy in a soil clay fraction // Eur. J. Soil Sci. 2004. V. 55. № 2. P. 265–270. https://doi.org/10.1111/j.1365-2389.2004.00597.x
  30. Durner W., Iden S. C., von Unold G. The Integral Suspension Pressure Method (ISP) for Precise Particle – Size Analysis by Gravitational Sedimentation // Water Resour. Res. 2017. V. 53. № 1. P. 33-48. https://doi.org/10.1002/2016WR019830
  31. Eshel G., Levy G.J., Mingelgrin U., Singer M.J. Critical evaluation of the use of laser diffraction for particle-size distribution analysis // Soil Sci. Society Am. J. 2004. V. 68. P. 736–743. https://doi.org/10.2136/sssaj2004.7360
  32. González-Teruel J.D., Jones S.B., Soto-Valles F., Torres-Sánchez R., Lebron I., Friedman S. P., Robinson D.A. Dielectric spectroscopy and application of mixing models describing dielectric dispersion in clay minerals and clayey soils // Sensors. 2020. V. 20. P. 6678. https://doi.org/10.3390/s20226678
  33. Güneş H. Particle size distribution analysis – guide to method selection. Published November 29, 2022. Updated March 18, 2024. URL: https://measurlabs.com/blog/particle-size-distribution-analysis-method-selection/
  34. Karavayskiy A.Y., Lukin Y.I. The Effect of Clay Content on the Spectra of Permetivity of Mineral Soils at Positive Temperatures // 2023 Radiation and Scattering of Electromagnetic Waves (RSEMW). Divnomorskoe, Russian Federation, 26-30 June 2023. https://doi.org/10.1109/RSEMW58451.2023.10201998
  35. Kaszubkiewicz J., Papuga K., Kawałko D., Woźniczka P. Particle Size Analysis by an Automated Dynamometer Method Integrated with an X-y Sample Changer // Measurement. 2020. V. 157. P. 107680. https://doi.org/10.1016/j.measurement.2020.107680
  36. Khalil M.N., Hendawy E., benhasher F.F., Shokr M.S., Elshewy M.A., Mohamed E.s. Integration of remote sensing and artificial neural networks for prediction of soil organic carbon in arid zones // Frontiers Environ. Sci. 2024. V. 12. P. 1448601. https://doi.org/10.3389/fenvs.2024.1448601
  37. Konert M., Vandenberghe J. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction // Sedimentology. 1997. V. 3. Р. 523–535. https://doi.org/10.1046/j.1365-3091.1997.d01-38.x
  38. Kuang B., Mahmood H. S., Quraishi M. Z., Hoogmoed W. B., Mouazen A. M., van Henten E.J. Chapter four. Sensing soil properties in the laboratory, in situ, and on-line: A review // Adv. Agronomy. 2012. V. 114. P. 155–223. https://doi.org/10.1016/B978-0-12-394275-3.00003-1
  39. Liu J., Zhao S., Jiang L., Chai L., Wu F. The influence of organic matter on soil dielectric constant at microwave frequencies (0.5-40 GHz) // Proc. IEEE Int. Geosci. Remote Sensing. Symp. Melbourne. Victoria. Australia, 21–26 July 2013. P. 13–16. https://doi.org/10.1109/IGARSS. 2013.6721080
  40. Liua N., Mitchellb J.K. Effects of structural and compositional factors on soil electromagnetic properties // Geomech. Geoengineer.: Int. J. 2009. V. 4. № 4. P. 271–285. https://doi.org/10.1080/17486020903174295
  41. Magno M.C., Venti F., Bergamin L., Gaglianone G., Pierfranceschi G., Romano E. A comparison between Laser Granulometer and Sedigraph in grain size analysis of marine sediments // Measurement. 2018. V. 128. P. 231–236. https://doi.org/10.1016/j.measurement.2018.06.055
  42. Merkus H.G. Particle size measurements. Fundamentals, practice, quality. Springer Particle Technology Series (POTS), 2009. V. 17. 532 p.
  43. Mironov V.L., Karavayskiy A.Yu. Lukin Yu.I., Molostov I.P. A dielectric model of thawed and frozen Arctic soils considering frequency, temperature, texture and dry density // Int. J. Remote Sens. 2020. V. 41. № 10. P. 3845–3865. https://doi.org/10.1080/01431161.2019.1708506
  44. Mironov V.L., Kerr Y.H., Kosolapova L.G., Savin I.V., Muzalevskiy K.V. A temperature-dependent dielectric model for thawed and frozen organic soil at 1.4 GHz // IEEE J. Select. Topics Appl. Earth Observ. Remote Sens. 2015. V. 8. № 9. P. 4470–4477. https://doi.org/10.1109/JSTARS. 2015.2442295
  45. Mironov V.L., Kosolapova L.G., Fomin S.V. Physically and Mineralogically Based Spectroscopic Dielectric Model for Moist Soils // IEEE Trans. Geosci. Remote Sens. 2009. V. 47. №. 7. P. 2059–2070. https://doi.org/10.1109/TGRS. 2008.2011631
  46. O’Neill P.E., Jackson T.J. Observed effects of soil organic matter content on the microwave emissivity of soils // Remote Sens. Environ. 1990. V. 31. P. 175–182. https://doi.org/10.1016/0034-4257(90)90087-3
  47. Polakowski C., Ryżak M., Sochan A., Beczek M., Mazur R., Bieganowski A. Particle size distribution of various soil materials measured by laser diffraction – the problem of reproducibility // Minerals. 2021. V. 11. № 4. P. 465. https://doi.org/10.3390/ min11050465
  48. Roper W. R., Robarge W.P., Osmond D. L., Heitman J. L. Comparing four methods of measuring soil organic matter in North Carolina soils // Soil Sci. Soc. Am. J. 2019. V. 83. № 2. P. 466–474. https://doi.org/10.2136/sssaj2018.03.0105
  49. Ramaswamy V., Rao P.S. Grain size analysis of sediments from the northern Andaman Sea: Comparison of laser diffraction and sieve-pipette techniques // Journal Coastal Research. 2006. V. 22. № 4. P. 1000–1009. https://www.jstor.org/stable/4300357
  50. Shevnin V., Mousatov A., Ryjov A., Delgado-Rodriquez O. Estimation of clay content in soil based on resistivity modelling and laboratory measurements // Geophys. Prospec. 2007. V. 55. P. 265–275. https://doi.org/10.1111/j.1365-2478.2007.00599.x
  51. Sochan A., Bieganowski A., Bartmiński P., Ryżak M., Brzezińska M., Dębicki R., Stuczyński T., Polakowski C. Use of the Laser Diffraction Method for Assessment of the Pipette Method // Soil Sci. Soc. Am. J. 2015. V. 79. P. 37–42. https://doi.org/10.2136/sssaj2013.07.0308n
  52. Stefano C. Di, Ferro V., Mirabile S. Comparison between grain-size analyses using laser diffraction and sedimentation methods // Biosyst. Engineer. 2010. V. 106. № 2. P. 205–215. https://doi.org/10.1016/j.biosystemseng.2010.03.013
  53. Syvitski J.P.M. Principles, methods, and application of particle size analysis. Cambridge: University Press, 1991. https://doi.org/10.1017/CBO9780511626142
  54. Szypłowska A., Lewandowski A., Yagihara S., et al. Dielectric models for moisture determination of soils with variable organic matter content // Geoderma. 2021. V. 401. P. 115288. https://doi.org/10.1016/j.geoderma.2021.115288
  55. Taubner H., Roth B., Tippkötter R. Determination of soil texture: Comparison of the sedimentation method and the laser-diffraction analysis // J. Plant Nutrition Soil Sci. 2009. V. 172. № 2. P. 161–171. https://doi.org/10.1002/jpln.200800085
  56. Vasilyeva M.A., Gusev Y.A., Shtyrlin V. G., Greenbaum (Gutina) A., Puzenko A., Ishai P.B. Feldman Y. Dielectric relaxation of water in clay minerals // Clays Clay Miner. 2014. V. 62. № 1. P. 62–73. https://doi.org/10.1346/CCMN.2014.0620106
  57. Wagner N., Bore T., Robinet J.-C., Coelho D., Taillade F., Delepine-Lesoille S. Dielectric relaxation behavior of Callovo-Oxfordian clay rock: A hydraulic-mechanical-electromagnetic coupling approach // J. Geophys. Res. Solid Earth. 2013. V. 118. P. 4729–4744. https://doi.org/10.1002/jgrb.50343
  58. Zhang R., Chan S., Bindlish R., Lakshmi V. A. Performance Analysis of Soil Dielectric Models over Organic Soils in Alaska for Passive Microwave Remote Sensing of Soil Moisture // Remote Sens. 2023. V. 15. № 6. P. 1658. https://doi.org/10.3390/rs15061658

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Illustration of the application of model (1) for the KDP of soil 18 at a moisture content of 0.208 m3/m3. 1–3 contributions of relaxation processes 1–3; 4 – contribution of the refractive part of the model; 5 – calculation according to the full model, including the influence of the UEP; 6 – experimental data.

下载 (269KB)
3. Fig. 2. Frequency dependence of the actual CDP of soils at close moisture values. 1 – soil 1; 2 – soil 7; 3 – soil 23; 4 – soil 21. Moisture, m3/m3: 1 – 0.163; 2 – 0.157; 3 – 0.154; 4 – 0.162. Density, g/cm3: 1 – 1.55; 2 – 1.16; 3 × 1.30; 4 – 0.97

下载 (147KB)
4. Fig. 3. Parameters of relaxation processes depending on humidity. 1 – soil 19; 2 – soil 7; 3 – soil 3.

下载 (246KB)
5. Fig. 4. Results of clay content estimation calculated by equation (3) (a) and by equation (4) (b). Dashed line is regression line, solid line is the line of equality of values.

下载 (180KB)
6. Fig. 5. Results of humus content assessment calculated using the maximum amount of bound water. The dashed line is the regression line, the solid line is the line of equality of values.

下载 (85KB)
7. Supplementary Material
下载 (166KB)
8. Fig. S1. Frequency dependence of the real (a) and imaginary (b) parts of the soil KDP No. 2. Solid lines – calculation by the model. Humidity, m3 /m3 : 1 – 0.087; 2 – 0.162; 3 - 0.228; 4 – 0.30. Density, g/cm3 : 1 – 1.64; 2 – 1.75; 3 – 1.80; 4 – 1.84.

下载 (79KB)
9. Fig. S2. Frequency dependence of the real (a) and imaginary (b) parts of the soil CDP No. 7. Solid lines – calculation by the model. Humidity, m3 /m3 : 1 – 0.074; 2 – 0.142; 3 – 0.229; 4 – 0.353; 5 – 0.440. Density, g/cm3 : 1 – 1.19; 2 – 1.22; 3 – 1.35; 4 – 1.40; 5 – 1.33.

下载 (98KB)
10. Fig. S3. Frequency dependence of the real (a) and imaginary (b) parts of the soil CDP No. 15. Solid lines – calculation by the model. Humidity, m3 /m3 : 1 – 0.082; 2 – 0.167; 3 – 0.269; 4 – 0.392; 5 – 0.440. Density, g/cm3 : 1 – 1.12; 2 – 1.11; 3 – 1.19; 4 – 1.30; 5 – 1.11.

下载 (110KB)
11. Fig. S4. Frequency dependence of the real (a) and imaginary (b) parts of the soil CDP No. 23. Solid lines – calculation by the model. Humidity, m3 /m3 : 1 – 0.098; 2 – 0.154; 3 – 0.233; 4 – 0.323; 5 – 0.417. Density, g/cm3 : 1 – 1.30; 2 – 1.30; 3 – 1.42; 4 – 1.53; 5 – 1.53.

下载 (97KB)
12. Fig. S5. Relationship between the parameters of relaxation processes at humidity close to full capillary saturation and the content of physical clay.

下载 (123KB)

版权所有 © Russian Academy of Sciences, 2025