Лауреаты Нобелевской премии 2020 года По физике — Роджер Пенроуз, Райнхард Генцель и Андреа Гез

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Второй год подряд самая престижная Нобелевская премия по физике присуждается за теоретические исследования в области гравитации и космологии и высококлассные астрономические наблюдения. В 2019 г. — Дж.Пиблзу за теоретические исследования в области физической космологии и астрономам М.Майору и Д.Кело за открытие экзопланеты вокруг звезды солнечного типа. В 2020 г. — математику Р.Пенроузу «за открытие, что образование черных дыр является надежным предсказанием общей теории относительности» и опять же астрономам Р.Генцелю и А.Гез — «за открытие компактного сверхмассивного объекта в центре нашей Галактики».

Об авторах

К. А Постнов

Государственный астрономический институт имени П.К.Штернберга Московского государственного университета имени М.В.Ломоносова

Email: director@sai.msu.ru
Москва, Россия

А. М Черепащук

Государственный астрономический институт имени П.К.Штернберга Московского государственного университета имени М.В.Ломоносова

Москва, Россия

Список литературы

  1. Finkelstein D. Past-future asymmetry of the gravitational field of a point particle. Physical Review. 1958; 110(4): 965–967. doi: 10.1103/PhysRev.110.965.
  2. Penrose R. Gravitational collapse and space-time singularities. Physical Review Letters. 1965; 14(3): 57–59. doi: 10.1103/PhysRevLett.14.57.
  3. Hawking S.W., Penrose R. The singularities of gravitational collapse and cosmology. Proceedings of the Royal Society of London. Series A. 1970; 314(1519): 529–548. doi: 10.1098/rspa.1970.0021
  4. Oppenheimer J.R., Snyder H. On continued gravitational contraction. Physical Review. 1939; 56: 455–459.
  5. Lifshitz E.M., Khalatnikov I.M. Investigations in relativistic cosmology. Advances in Physics. 1963; 12(46): 185–249. doi: 10.1080/00018736300101283.
  6. Белинский В.А., Халатников И.М. Общее решение уравнений гравитации с физической особенностью. ЖЭТФ. 1969; 57(6): 2163–2175. [Belinskii V.A., Khalatnikov I.M. General solution of the gravitational equations with a physical singularity. Sov. Phys. JETP. 1970; 30(6): 1174–1180.]
  7. Belinskii V.A., Khalatnikov I.M., Lifshttz E.M. Oscillatory approach to a singular point in the relativistic cosmology. Advances in Physics. 1970; 19(80): 525–573.
  8. Khalatnikov I.M., Lifshitz E.M. General cosmological solution of the gravitational equations with a singularity in time. Physical Review Letters. 1970; 24(2): 76–79.
  9. Penrose R. Structure of space-time. Batelle Rencontres. C.M. de Witt, J.A.Wheeler (eds.). New York, 1968.
  10. Hawking S.W. Black holes in General Relativity. Communications in Mathematical Physics. 1972; 25: 152.
  11. Penrose R. Naked singularities. Annals of the New York Academy of Sciences. 1973; 224(1): 125–134. doi: 10.1111/j.1749-6632.1973.tb41447.x.
  12. Penrose R. Gravitational collapse: the role of general relativity. Nuovo Cimento Rivista Serie. 1969; 1: 252–276.
  13. Penrose R., Floyd R.M. Extraction of rotational energy from a black hole. Nature Physical Science. 1971; 229(6): 177–179. doi: 10.1038/physci229177a0.
  14. Zel’dovich Y.B. Amplification of cylindrical electromagnetic waves reflected from a rotating body. Soviet Physics JETP. 1972; 35(6): 1085–1087.
  15. Hawking S.W. Particle creation by black holes. Communications in Mathematical Physics. 1975; 43(3): 199–220. doi: 10.1007/BF02345020.
  16. Blandford R.D., Znajek R.L. Electromagnetic extraction of energy from Kerr black holes. Monthly Notices of the Royal Astronomical Society. 1977; 179: 433–456. doi: 10.1093/mnras/179.3.433.
  17. Schmidt M. 3C 273: A star-like object with large red-shift. Nature. 1963; 197(4872): 1040. doi: 10.1038/1971040a0.
  18. Salpeter E.E. Accretion of interstellar matter by massive objects. Astrophysical Journal. 1964; 140: 796–800. doi: 10.1086/147973.
  19. Зельдович Я.Б., Новиков И.Д. Оценка массы сверхзвезды. Докл. АН СССР. 1964; 158(4): 811–814.
  20. Shakura N.I., Sunyaev R.A. Black holes in binary systems. Observational appearance. Astronomy and Astrophysics. 1973; 24: 337–355.
  21. Pringle J.E., Rees M.J. Accretion disc models for compact X-ray sources. Astronomy and Astrophysics. 1972; 21: 1–9.
  22. Novikov I.D., Thorne K.S. Black holes astrophysics. Black Holes. C.DeWitt, B.S.DeWitt (eds.). London, 1973: 343–450.
  23. Cherepashchuk A.M., Efremov Yu.N., Kurochkin N.E., Shakura N.I., Sunyaev R.A. On the nature of the optical variations of HZ Her = Her X1. Information Bulletin on Variable Stars. 1972; 720: 1–2.
  24. Bahcall J.N, Bahcall N.A. The period and light curve of HZ Herculis. Astrophysical Journal. 1972; 178: L1. doi: 10.1086/181070.
  25. Черепащук А.М. Тесные двойные звезды. М., 2013.
  26. Lyutyi V.M., Syunyaev R.A., Cherepashchuk A.M. Nature of the optical variability of HZ Herculis (Her X-1) and BD + 34deg3815 (Cyg X-1). Soviet Astronomy. 1973; 17: 1.
  27. Tutukov A.V., Yungelson L.R. The merger rate of neutron star and black hole binaries. Monthly Notices of the Royal Astronomical Society. 1993; 260(3): 675–678. doi: 10.1093/mnras/260.3.675.
  28. Lipunov V.M., Postnov K.A., Prokhorov M.E. First LIGO events: binary black holes mergings. New Astronomy. 1997; 2: 43–52.
  29. Sharov A.S., Efremov Y.N. On the light variability of the object identified with the radio source 3C273. Commission 27 of the I.A.U. Information Bulletin on Variable Stars. 1963; 23: 1.
  30. Dibai E.A. Parameters of active galaxy nuclei and the approach to critical luminosity. Soviet Astronomy. 1984; 28: 123–127.
  31. Dibai E.A. An empirical model for active galactic nuclei. Soviet Astronomy. 1984; 28: 245–253.
  32. Cherepashchuk A.M., Lyutyi V.M. Rapid variations of H-alfa intensity in the nuclei of Seyfert galaxies NGC 4151, 3516, 1068. Astrophys. Lett. 1973; 13: 165.
  33. Гнедин Ю.Н. Новый метод исследования сверхмассивных черных дыр, основанный на поляриметрических наблюдениях активных ядер галактик. УФН. 2013; 183(7): 747–752.
  34. Afanasiev V.L., Amirkhanyan V.R. Technique of polarimetric observations of faint objects at the 6-m BTA telescope. Astrophysical Bulletin. 2012; 67: 438–452. doi: 10.1134/S1990341312040074.
  35. Ford H.C. et al. Narrowband HST images of M87: Evidence for a disk of ionized gas around a massive black hole. Astrophysical Journal. 1994; 435: L27. doi: 10.1086/187586.
  36. Miyoshi M., Moran J., Herrnstein J. et al. Evidence for a black hole from high rotation velocities in a sub-parsec region of NGC4258. Nature. 1995; 373: 127–129. doi: 10.1038/373127a0.
  37. Oort J.H. The galactic center. Annual Review of Astronomy and Astrophysics. 1977; 15: 295–362. doi: 10.1146/annurev.aa.15.090177.001455.
  38. Genzel R., Townes C.H. Physical conditions, dynamics, and mass distribution in the center of the galaxy. Annual Review of Astronomy and Astrophysics. 1987; 25: 377–423. doi: 10.1146/annurev.aa.25.090187.002113.
  39. Eckart A., Genzel R. Observations of stellar proper motions near the Galactic Centre. Nature. 1996; 383(6599): 415–417. doi: 10.1038/383415a0.
  40. Ghez A.M., Klein B.L., Morris M., Becklin E.E. High proper-motion stars in the vicinity of Sagittarius A*: Evidence for a supermassive black hole at the center of our galaxy. Astrophysical Journal. 1998; 509(2): 678–686. doi: 10.1086/306528.
  41. Ghez A., Morris M., Becklin E. et al. The accelerations of stars orbiting the Milky Way’s central black hole. Nature. 2000; 407: 349–351. doi: 10.1038/35030032.
  42. Gillessen S., Eisenhauer F., Trippe S., Alexander T., Genzel R., Martins F., Ott T. Monitoring stellar orbits around the massive black hole in the Galactic center. Astrophysical Journal. 2009; 692(2): 1075–1109. doi: 10.1088/0004-637X/692/2/1075.
  43. Abuter R. et al. Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole. Astronomy & Astrophysics. 2020; 636: L5. doi: 10.1051/0004-6361/202037813.
  44. Новиков И.Д. Новая концепция кротовых нор и Мультивселенная. УФН. 2018; 188: 301–310.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Издательство «Наука», 2020

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах