2020 Nobel Prize Laureates in Physics: Roger Penrose, Reinhard Genzel and Andrea Ghez
- Authors: Postnov K.A1, Cherepashchuk A.M1
-
Affiliations:
- Shternberg State Astronomical Institute, Lomonosov Moscow State University
- Issue: No 12 (2020)
- Pages: 43-56
- Section: Articles
- URL: https://journals.eco-vector.com/0032-874X/article/view/627940
- DOI: https://doi.org/10.7868/S0032874X20120066
- ID: 627940
Cite item
Abstract
For the second year in a row, the most prestigious Nobel Prize in physics has been awarded for theoretical research in gravity and cosmology and high-class astronomical observations. In 2019 it was awarded to J.Peebles for theoretical discoveries in physical cosmology and to astronomers M.Mayor and D.Queloz for the discovery of an exoplanet orbiting a solar-type star. In 2020 the Prize is awarded to mathematician R.Penrose “for the discovery that black hole formation is a robust prediction of the general theory of relativity” and to the astronomers R.Genzel and A.Ghez “for the discovery of a super-massive compact object at the center of our galaxy”.
About the authors
K. A Postnov
Shternberg State Astronomical Institute, Lomonosov Moscow State University
Email: director@sai.msu.ru
Moscow, Russia
A. M Cherepashchuk
Shternberg State Astronomical Institute, Lomonosov Moscow State UniversityMoscow, Russia
References
- Finkelstein D. Past-future asymmetry of the gravitational field of a point particle. Physical Review. 1958; 110(4): 965–967. doi: 10.1103/PhysRev.110.965.
- Penrose R. Gravitational collapse and space-time singularities. Physical Review Letters. 1965; 14(3): 57–59. doi: 10.1103/PhysRevLett.14.57.
- Hawking S.W., Penrose R. The singularities of gravitational collapse and cosmology. Proceedings of the Royal Society of London. Series A. 1970; 314(1519): 529–548. doi: 10.1098/rspa.1970.0021
- Oppenheimer J.R., Snyder H. On continued gravitational contraction. Physical Review. 1939; 56: 455–459.
- Lifshitz E.M., Khalatnikov I.M. Investigations in relativistic cosmology. Advances in Physics. 1963; 12(46): 185–249. doi: 10.1080/00018736300101283.
- Белинский В.А., Халатников И.М. Общее решение уравнений гравитации с физической особенностью. ЖЭТФ. 1969; 57(6): 2163–2175. [Belinskii V.A., Khalatnikov I.M. General solution of the gravitational equations with a physical singularity. Sov. Phys. JETP. 1970; 30(6): 1174–1180.]
- Belinskii V.A., Khalatnikov I.M., Lifshttz E.M. Oscillatory approach to a singular point in the relativistic cosmology. Advances in Physics. 1970; 19(80): 525–573.
- Khalatnikov I.M., Lifshitz E.M. General cosmological solution of the gravitational equations with a singularity in time. Physical Review Letters. 1970; 24(2): 76–79.
- Penrose R. Structure of space-time. Batelle Rencontres. C.M. de Witt, J.A.Wheeler (eds.). New York, 1968.
- Hawking S.W. Black holes in General Relativity. Communications in Mathematical Physics. 1972; 25: 152.
- Penrose R. Naked singularities. Annals of the New York Academy of Sciences. 1973; 224(1): 125–134. doi: 10.1111/j.1749-6632.1973.tb41447.x.
- Penrose R. Gravitational collapse: the role of general relativity. Nuovo Cimento Rivista Serie. 1969; 1: 252–276.
- Penrose R., Floyd R.M. Extraction of rotational energy from a black hole. Nature Physical Science. 1971; 229(6): 177–179. doi: 10.1038/physci229177a0.
- Zel’dovich Y.B. Amplification of cylindrical electromagnetic waves reflected from a rotating body. Soviet Physics JETP. 1972; 35(6): 1085–1087.
- Hawking S.W. Particle creation by black holes. Communications in Mathematical Physics. 1975; 43(3): 199–220. doi: 10.1007/BF02345020.
- Blandford R.D., Znajek R.L. Electromagnetic extraction of energy from Kerr black holes. Monthly Notices of the Royal Astronomical Society. 1977; 179: 433–456. doi: 10.1093/mnras/179.3.433.
- Schmidt M. 3C 273: A star-like object with large red-shift. Nature. 1963; 197(4872): 1040. doi: 10.1038/1971040a0.
- Salpeter E.E. Accretion of interstellar matter by massive objects. Astrophysical Journal. 1964; 140: 796–800. doi: 10.1086/147973.
- Зельдович Я.Б., Новиков И.Д. Оценка массы сверхзвезды. Докл. АН СССР. 1964; 158(4): 811–814.
- Shakura N.I., Sunyaev R.A. Black holes in binary systems. Observational appearance. Astronomy and Astrophysics. 1973; 24: 337–355.
- Pringle J.E., Rees M.J. Accretion disc models for compact X-ray sources. Astronomy and Astrophysics. 1972; 21: 1–9.
- Novikov I.D., Thorne K.S. Black holes astrophysics. Black Holes. C.DeWitt, B.S.DeWitt (eds.). London, 1973: 343–450.
- Cherepashchuk A.M., Efremov Yu.N., Kurochkin N.E., Shakura N.I., Sunyaev R.A. On the nature of the optical variations of HZ Her = Her X1. Information Bulletin on Variable Stars. 1972; 720: 1–2.
- Bahcall J.N, Bahcall N.A. The period and light curve of HZ Herculis. Astrophysical Journal. 1972; 178: L1. doi: 10.1086/181070.
- Черепащук А.М. Тесные двойные звезды. М., 2013.
- Lyutyi V.M., Syunyaev R.A., Cherepashchuk A.M. Nature of the optical variability of HZ Herculis (Her X-1) and BD + 34deg3815 (Cyg X-1). Soviet Astronomy. 1973; 17: 1.
- Tutukov A.V., Yungelson L.R. The merger rate of neutron star and black hole binaries. Monthly Notices of the Royal Astronomical Society. 1993; 260(3): 675–678. doi: 10.1093/mnras/260.3.675.
- Lipunov V.M., Postnov K.A., Prokhorov M.E. First LIGO events: binary black holes mergings. New Astronomy. 1997; 2: 43–52.
- Sharov A.S., Efremov Y.N. On the light variability of the object identified with the radio source 3C273. Commission 27 of the I.A.U. Information Bulletin on Variable Stars. 1963; 23: 1.
- Dibai E.A. Parameters of active galaxy nuclei and the approach to critical luminosity. Soviet Astronomy. 1984; 28: 123–127.
- Dibai E.A. An empirical model for active galactic nuclei. Soviet Astronomy. 1984; 28: 245–253.
- Cherepashchuk A.M., Lyutyi V.M. Rapid variations of H-alfa intensity in the nuclei of Seyfert galaxies NGC 4151, 3516, 1068. Astrophys. Lett. 1973; 13: 165.
- Гнедин Ю.Н. Новый метод исследования сверхмассивных черных дыр, основанный на поляриметрических наблюдениях активных ядер галактик. УФН. 2013; 183(7): 747–752.
- Afanasiev V.L., Amirkhanyan V.R. Technique of polarimetric observations of faint objects at the 6-m BTA telescope. Astrophysical Bulletin. 2012; 67: 438–452. doi: 10.1134/S1990341312040074.
- Ford H.C. et al. Narrowband HST images of M87: Evidence for a disk of ionized gas around a massive black hole. Astrophysical Journal. 1994; 435: L27. doi: 10.1086/187586.
- Miyoshi M., Moran J., Herrnstein J. et al. Evidence for a black hole from high rotation velocities in a sub-parsec region of NGC4258. Nature. 1995; 373: 127–129. doi: 10.1038/373127a0.
- Oort J.H. The galactic center. Annual Review of Astronomy and Astrophysics. 1977; 15: 295–362. doi: 10.1146/annurev.aa.15.090177.001455.
- Genzel R., Townes C.H. Physical conditions, dynamics, and mass distribution in the center of the galaxy. Annual Review of Astronomy and Astrophysics. 1987; 25: 377–423. doi: 10.1146/annurev.aa.25.090187.002113.
- Eckart A., Genzel R. Observations of stellar proper motions near the Galactic Centre. Nature. 1996; 383(6599): 415–417. doi: 10.1038/383415a0.
- Ghez A.M., Klein B.L., Morris M., Becklin E.E. High proper-motion stars in the vicinity of Sagittarius A*: Evidence for a supermassive black hole at the center of our galaxy. Astrophysical Journal. 1998; 509(2): 678–686. doi: 10.1086/306528.
- Ghez A., Morris M., Becklin E. et al. The accelerations of stars orbiting the Milky Way’s central black hole. Nature. 2000; 407: 349–351. doi: 10.1038/35030032.
- Gillessen S., Eisenhauer F., Trippe S., Alexander T., Genzel R., Martins F., Ott T. Monitoring stellar orbits around the massive black hole in the Galactic center. Astrophysical Journal. 2009; 692(2): 1075–1109. doi: 10.1088/0004-637X/692/2/1075.
- Abuter R. et al. Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole. Astronomy & Astrophysics. 2020; 636: L5. doi: 10.1051/0004-6361/202037813.
- Новиков И.Д. Новая концепция кротовых нор и Мультивселенная. УФН. 2018; 188: 301–310.
Supplementary files
