High Energy Physics in the Earth's Atmosphere

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The new methodology of high-energy physics in the atmosphere is characterized by the consistent application of particle physics and nuclear spectroscopy to reveal the details of the operation of electron accelerators that arise directly over our heads in thunderclouds. Together with the lasting minutes fluxes of high-energy electrons and γ-rays from the relativistic runaway electron avalanche (RREA), hour-lasting isotropic fluxes of low-energy γ-rays from 222Rn isotopes were also recorded at the Aragats research station. Each type of cosmic ray brings its own specific evidence of the structure and strength of the atmospheric electric field. The muon deceleration effect observed simultaneously with the largest recorded increase in the flux of electrons and γ-rays on Mount Lomnicki Shtit makes it possible to estimate the maximum value of the atmospheric electric field. By measuring the energy spectra of natural γ-radiation, we have discovered a new effect of the circulation of Radon progeny during thunderstorms. Comparison of the energy spectra of electrons and γ-rays during thunderstorm ground-level exceedances (TGEs) allows to study the emerging electrical structures in the atmosphere, which accelerate the seed electrons of cosmic rays to ≈70 MeV. Simultaneous measuring the fluxes of neutrons and γ-rays with a neutron monitor and a SEVAN hybrid particle detector supports the photonuclear origin of atmospheric neutrons.

About the authors

A. Chilingarian

Alikhanyan National Science Laboratory (Yerevan Physics Institute)

Email: chili@aragats.am
Yerevan, Armenia

References

  1. Chilingarian A., Daryan A., Arakelyan K. et al. Ground-based observations of thunderstorm-correlated fluxes of high-energy electrons, gamma rays, and neutrons. Physical Review D. 2010; 82: 043009.
  2. Chilingarian A., Hovsepyan G., Hovhannisyan A. Particle bursts from thunderclouds: Natural particle accelerators above our heads. Physical Review D. 2011; 83: 062001.
  3. Chilingarian A., Hovsepyan G., Kazaryan S. et al. Study of extensive air showers and primary energy spectra by MAKET-ANI detector on mountain Aragats. Astroparticle Physics. 2007; 28: 58–71.
  4. Chilingarian A., Bostanjyan N. On the relation of the Forbush decreases detected by ASEC monitors during the 23rd solar activity cycle with ICME parameters. Advances in Space Research. 2010; 45(5): 614–621. doi: 10.1016/j.asr.2009.09.001.
  5. Chilingarian A., Babayan V., Karapetyan T. et al. The SEVAN Worldwide network of particle detectors: 10 years of operation. Advances in Space Research. 2018; 61(10): 2680–2696. doi: 10.1016/j.asr.2018.02.030.
  6. Bostanjyan N., Chilingarian A. et al. On the production of highest energy solar protons at 20 January 2005. Advances in Space Research. 2007; 39(9): 1454–1457. doi: 10.1016/j.asr.2007.03.024.
  7. Wilson C.T.R. The acceleration of β-particles in strong electric fields such as those of thunderclouds. Mathematical Proceedings of the Cambridge Philosophical Society. 1925; 22(4): 534–538. doi: 10.1017/S0305004100003236.
  8. Eddington A.S. The source of stellar energy. Nature. 1926; 117: 25–32. doi: 10.1038/117025a0.
  9. Schonland B.F.J., Viljoen J.P.T. On a penetrating radiation from thunderclouds. Proceedings of the Royal Society of London. Series A. 1933; 140(841): 314–333.
  10. Fishman G.J., Bhat P.N., Mallozzi R. et al. Discovery of intense gamma ray flashes of atmospheric origin. Science. 1994; 264(5163): 1313–1316. doi: 10.1126/science.264.5163.1313
  11. Kuettner J. The electrical and meteorological conditions inside thunderclouds. Journal of the Atmospheric Sciences. 1950; 7(5): 322–332.
  12. Feynman R., Leighton R.B., Sands M. The Feynman Lectures on Physics. Vol.II, Ch.9: Electricity in the Atmosphere. M.A.Gottlieb and R.Pfeiffer (eds.). California Institute of Technology, 1963.
  13. Chilingarian A., Chilingaryan S., Karapetyan T. et al. On the initiation of lightning in thunderclouds. Scientific Reports. 2017; 7: 1371. doi: 10.1038/s41598-017-01288-0.
  14. Suszcynsky D.M., Roussel-Dupre R., Shaw G. Ground-based search for X-rays generated by thunderstorms and lightning. Journal of Geophysical Research: Atmospheres. 1996; 101(D18): 23,505–23,516. doi: 10.1029/96JD02134.
  15. Alexeenko V.V., Khaerdinov N.S., Lidvansky A.S. et al. Transient variations of secondary cosmic rays due to atmospheric electric field and evidence for pre-lightning particle acceleration. Physics Letters A. 2002; 301(3–4): 299–306. doi: 10.1016/S0375-9601(02)00981-7.
  16. Gurevich A.V., Karashtin A.N., Chubenko A.P. et al. Experimental evidence of giant electron-gamma bursts generated by extensive atmospheric showers in thunderclouds. Physics Letters A. 2004; 325(5–6): 389–402. doi: 10.1016/j.physleta.2004.03.074.
  17. Lidvansky A.S. The effect of the electric field of the atmosphere on cosmic rays. Journal of Physics G: Nuclear and Particle Physics. 2003; 29(5): 925–937.
  18. Khaerdinov N.S., Lidvansky A.S. The Baksan experiment on thunderstorm CR variations: history, results, and prospects. Proceedings of International Symposium TEPA 2015. Armenia: Tigran Mets, 2016: 35–40.
  19. Gurevich A.V., Zybin K.P., Roussel-Dupre R.A. Lightning initiation by simultaneous of runaway breakdown and cosmic ray showers. Physics Letters A. 1999; 254(1–2): 79–87. doi: 10.1016/S0375-9601(99)00091-2.
  20. Chilingarian A., Arakelyan K., Avakyan K. et al. Correlated measurements of secondary cosmic ray fluxes by the Aragats Space-Environmental Center monitors. Nuclear Instruments and Methods in Physics Research Section A. 2005; 543(2–3): 483–496. doi: 10.1016/j.nima.2004.12.021.
  21. Gurevich A.V. On the theory of runaway electrons. JETP. 1961; 12(5): 904–912.
  22. Gurevich A.V., Milikh G.M., Roussel-Dupre R. Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm. Physics Letters A. 1992; 165(5–6): 463–468. doi: 10.1016/0375-9601(92)90348-P.
  23. Babich L.P. et al. Comparison of relativistic runaway electron avalanche rates obtained from Monte Carlo simulations and kinetic equation solution. IEEE Transactions on Plasma Science. 2001; 29(3): 430–438. doi: 10.1109/27.928940.
  24. Dwyer J.R. A fundamental limit on electric fields in air. Geophysical Research Letters. 2003; 30(20): 2055. doi: 10.1029/2003GL017781.
  25. Chilingarian A., Hovsepyan G., Mailyan B. In situ measurements of the run- away breakdown (RB) on Aragats mountain. Nuclear Instruments and Methods in Physics Research Section A. 2017; 874: 19–27. doi: 10.1016/j.nima.2017.08.022.
  26. Chilingarian A., Mailyan B., Vanyan L. Recovering of the energy spectra of electrons and gamma rays coming from the thunderclouds. Atmospheric Research. 2012; 114–115: 1–16. doi: 10.1016/j.atmosres.2012.05.008.
  27. Chilingarian A., Hovsepyan G., Soghomonyan S. et al. Structures of the intracloud electric field supporting origin of long-lasting thunderstorm ground enhancements. Physical Review D. 2018; 98: 082001. doi: 10.1103/PhysRevD.98.082001.
  28. Chilingaryan S. et al. Advanced data extraction infrastructure: web based system for management of time series data. Journal of Physics: Conference Series. 2010; 219: 042034.
  29. Chilingarian A., Hovsepyan G., Khanikyanc G. et al. Lightning origination and thunderstorm ground enhancements terminated by the lightning flash. Europhysics Letters. 2015; 110(4): 49001. doi: 10.1209/0295-5075/110/49001.
  30. Chilingarian A. Long lasting low energy thunderstorm ground enhancements and possible Rn-222 daughter isotopes contamination. Physical Review D. 2018; 98, 022007. doi: 10.1103/PhysRevD.98.022007.
  31. Wilkcning M.H., Kawano M., Lane C. Radon-daughter ions and their relation to some properties of the atmosphere. Tellus. 1966; 18(2–3): 679–684. doi: 10.3402/tellusa.v18i2-3.9199.
  32. Chilingarian A., Hovsepyan G., Elbekian A. et al. Origin of enhanced gamma radiation in thunderclouds. Physical Review Research. 2019; 1: 033167. doi: 10.1103/PhysRevResearch.1.033167.
  33. Reuveni Y., Yair Y., Price C., Steinitz G. Ground level gamma-ray and electric field enhancements during disturbed weather: Combined signatures from convective clouds, lightning and rain. Atmospheric Research. 2017; 196: 142–150. doi: 10.1016/j.atmosres.2017.06.012.
  34. Chilingarian A., Hovsepyan G., Sargsyan B. Circulation of Radon progeny in the terrestrial atmosphere during thunderstorms. Geophysical Research Letters. 2021; 48(1): e2020GL091155. doi: 10.1029/2020GL091155.
  35. Chilingarian A., Hovsepyan G., Karapetyan T. et al. Structure of thunderstorm ground enhancements. Physical Review D. 2020; 101: 122004. doi: 10.1103/PhysRevD.101.122004.
  36. Chum J., Langer R., Baše J. et al. Significant enhancements of secondary cosmic rays and electric field at high mountain peak during thunderstorms. Earth Planets Space. 2020; 72: 28. doi: 10.1186/s40623-020-01155-9.
  37. Kuroda Y., Oguri S., Kato Y. et al. Observation of gamma ray bursts at ground level under the thunderclouds. Physics Letters B. 2016; 758: 286–291. doi: 10.1016/j.physletb.2016.05.029.
  38. Kudela K., Chum J., Kollárik M. et al. Correlations between secondary cosmic ray rates and strong electric fields at Lomnický štít. JGR Atmospheres. 2017; 122(20): 10,700–10,710. doi: 10.1002/2016JD026439.
  39. Wada Y., Bowers G.S., Enoto T. et al. Termination of electron acceleration in thundercloud by intracloud/intercloud discharge. Geophysical Research Letters. 2018; 45(11): 5700-5707. doi: 10.1029/2018GL077784.
  40. Enoto T., Wada Y., Furuta Y. et al. Photonuclear reactions triggered by lightning discharge. Nature. 2017; 551: 481–484. doi: 10.1038/nature24630.
  41. Shepetov A., Antonova V., Kalikulov O. et al. The prolonged gamma ray enhancement and the short radiation burst events observed in thunderstorms at Tien Shan. Atmospheric Research. 2021; 248: 105266. 10.DOI:1016/j.atmosres.2020.105266.
  42. Wada Y. et al. Meteorological aspects of gamma-ray glows in winter thunderstorms. Mendeley Data. 2020. doi: 10.17632/88752zvv3v.1.
  43. Chilingarian A., Hovsepyan G., Karapetyan G., Zazyan M. Stopping muon effect and estimation of intracloud electric field. Astroparticle Physics. 2021; 124: 102505. doi: 10.1016/j.astropartphys.2020.102505.
  44. Chilingarian A., Karapetyan T., Zazyan M. et. al. Maximum strength of the atmospheric electric field. Physical Review D. 2021; 103: 043021. doi: 10.1103/PhysRevD.103.043021.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Издательство «Наука»

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies