Through the Greenland Ice Stream

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Glaciers and ice sheets store over two-thirds of Earth’s freshwater and are presently greatly contributing to rising sea levels. The main discharge from the Antarctic and Greenland ice sheets is drained through fast-moving ice streams and outlet glaciers. Understanding the behavior of these ice masses, including why a huge mass of ice moves at such high speeds, is essential to predicting their future evolution and future sea-level rises. A deep drilling project at the upper part of the largest ice stream in Greenland, Northeast Greenland Ice Stream, was started in 2015, with the main objective of studying the dynamics of ice flow in an ice stream via ice rheology and deformation studies of the ice core and via borehole observations of basal sliding and borehole deformation. Recently, this borehole reached as deep as 2122.4 m, and the drilling process was often not in the routine mode. The project Steering Committee has decided to cancel the 2020 season in light of the global Coronavirus situation. Drilling to the bedrock at the target depth of ~2550 m is planned for the next one or two field seasons.

Авторлар туралы

PG. Talalay

Polar Research Center, Institute for Polar Science and Engineering, Jilin University

Email: ptalalay@yahoo.com
Changchun, China

D. Dahl-Jensen

Physics of Ice Climate and Earth, Niels Bohr Institute, University of Copenhagen

Email: ddj@nbi.ku.dk
Copenhagen, Denmark

S. Hansen

Physics of Ice Climate and Earth, Niels Bohr Institute, University of Copenhagen

Email: sbh@nbi.dk
Copenhagen, Denmark

T. Popp

Physics of Ice Climate and Earth, Niels Bohr Institute, University of Copenhagen

Email: trevor@nbi.ku.dk
Copenhagen, Denmark

J. PSteffensen

Physics of Ice Climate and Earth, Niels Bohr Institute, University of Copenhagen

Email: jps@nbi.ku.dk
Copenhagen, Denmark

K. Nielsen

Physics of Ice Climate and Earth, Niels Bohr Institute, University of Copenhagen

Email: karl.emil.nielsen@nbi.ku.dk
Copenhagen, Denmark

N. Zhang

Polar Research Center, Institute for Polar Science and Engineering, Jilin University

Email: znan@jlu.edu.cn
Changchun, China

Әдебиет тізімі

  1. Swithinbank C.W.M. Ice streams. Polar Record. 1954; 7(48): 185-186.
  2. Hughes T.J. West Antarctic ice streams. Reviews of Geophysics and Space Physics. 1977; 15: 1-46. doi: 10.1029/RG015i001p00001.
  3. Bentley C.R. Antarctic ice streams: A review. Journal of Geophysical Research. 1987; 92: 8843-8858. doi: 10.1029/JB092iB09p08843.
  4. Fahnestock M, Bamber J. Morphology and surface characteristics of the West Antarctic Ice Sheet. The West Antarctic Ice Sheet: Behaviour and Environment. Antarctic Research Series. 2001; 77: 123-136.
  5. Joughin I., Tulaczyk S, Bindschadler R.A., Price S.F. Changes in West Antarctic ice stream velocities: Observation and analysis. Journal of Geophysical Research. 2002; 107(B11): 1-22. doi: 10.1029/2001JB001029.
  6. Bamber J.L., Vaughan D.G., Joughin I. Widespread complex flow in the interior of the Antarctic Ice Sheet. Science. 2000; 287: 1248-1250. doi: 10.1126/science.287.5456.1248.
  7. Engelhardt H., Humphrey N, Kamb B, Fahnestock M. Physical conditions at the base of a fast moving Antarctic ice stream. Science. 1990; 248: 57-59. doi: 10.1126/science.248.4951.57.
  8. Tulaczyk S, Kamb B, Scherer R.P., Engelhardt H.F. Sedimentary processes at the base of a West Antarctic ice stream: constraints from textural and compositional properties of subglacial debris. International Journal of Sediment Research. 1998; 68(3): 487-496. doi: 10.2110/jsr.68.487.
  9. Rignot E., Mouginot J, Scheuchl B. Ice flow of the Antarctic Ice Sheet. Science. 2011; 333: 1427-1430. doi: 10.1126/science.1208336.
  10. MEaSUREs Greenland Ice Sheet Velocity Map from InSAR Data. National Snow & Ice Data Center. 2015. Retrieved June 28, 2017 from http://nsidc.org/data/docs/measures/nsidc0478_joughin.
  11. Walsh K.M., Howat I.M., Ahn Y, Enderlin E.M. Changes in the marine-terminating glaciers of central east Greenland, 2000-2010. The Cryosphere. 2012; 6: 211-220. doi: 10.5194/tc-6-211-2012.
  12. Joughin I., Smith B.E., Howat I.M. et al. Greenland flow variability from ice-sheet-wide velocity mapping. Journal of Glaciology. 2010; 56(197): 415-430.
  13. Vallelonga P, Christianson K., Alley R.B. et al. Initial results from geophysical surveys and shallow coring of the Northeast Greenland Ice Stream (NEGIS). The Cryosphere. 2014; 8: 1275-1287. doi: 10.5194/tc-8-1275-2014.
  14. Dahl-Jensen D, Kirk M, Larsen L.B. et al. Field season 2016. East Greenland Ice core Project (EGRIP) 2015-2020: Establishing the EGRIP drilling camp. Prepared by Ice and Climate Group, NBI for The EGRIP project responsibles and participants and Danish and Greenlandic authorities. Copenhagen, 2016.
  15. Keisling B.A., Christianson K., Alley R.B. et al. Basal conditions and ice dynamics inferred from radar-derived internal stratigraphy of the Northeast Greenland Ice Stream. Annals of Glaciology. 2014; 55: 127-137. doi: 10.3189/2014AoG67A090.
  16. Popp T.J., Hansen S.B., Sheldon S.G., Panton C. Deep ice core drilling performance and experience at NEEM, Greenland. Annals of Glaciology. 2014; 55(68): 53-64. doi: 10.3189/2014AoG68A042.
  17. Larsen L.B., Steffensen J.P., Dahl-Jensen D. Field season report 2011. North Greenland Eemian Ice drilling (NEEM) 2007-2011: NEEM bedrock core drilling and last processing. Prepared by Ice and Climate Group, NBI for the NEEM Steering Committee and Danish and Greenlandic authorities. Copenhagen, 2011.
  18. Steffensen J.P., Larsen L.B., Dahl-Jensen D. Field season report 2015. North Greenland Eemian Ice drilling East Greenland Ice drilling Project (NEEM/EGRIP): Moving the entire NEEM camp from NEEM site to EGRIP site by overland traverse. Setting up EGRIP camp structures. Prepared by Ice and Climate Group, NBI for The NEEM Steering Committee, EGRIP Steering Committee and Danish and Greenlandic authorities. Copenhagen, 2015.
  19. Johnsen S.J., Hansen S.B., Sheldon S.G. et al. The Hans Tausen drill: design, performance, further developments and some lessons learned. Annals of Glaciology. 2007; 47: 89-98. doi: 10.3189/172756407786857686.
  20. Talalay P.G. Mechanical Ice Drilling Technology. Beijing; Singapore, 2016.
  21. Vasiliev N.I., Talalay P.G., Bobin N.E. et al. Deep drilling at Vostok station, Antarctica: history and recent events. Annals of Glaciology. 2007; 47: 10-23. doi: 10.3189/172756407786857776.
  22. Wilhelms F., Sheldon S.G., Hamman I., Kipfstuhl S. Implications for and findings from deep ice core drillings - example: the ultimate tensile strength of ice at high strain rates. Physics and Chemistry of Ice. The Proceedings of the 11th Int. Conference on the Physics and Chemistry of Ice, Bremerhaven, Germany, July 23-28, 2006. W.F.Kuhs (Ed.). 2007: 635-639.
  23. lalalay P., Yang C., Cao P. et al. Ice-core drilling problems and solutions. Cold Regions Science and Technology. 2015; 120: 1-20. doi: 10.1016/j.coldregions.2015.08.014.
  24. Sheldon S.G., Popp T.J., Hansen S.B. et al. Promising new borehole liquids for ice-core drilling on the East Antarctic high plateau. Annals of Glaciology. 2014; 55(68): 260-270. doi: 10.3189/2014AoG68A043.
  25. Talalay P.G. Subglacial till and bedrock drilling. Cold Regions Science and Technology. 2013; 86: 142-166. doi: 10.1016/j.coldregions.2012.08.009.
  26. Popp T.J., Hansen S.B., Sheldon S.G. et al. Drilling into debris-rich basal ice at the bottom of the NEEM (Greenland) borehole. Annals of Glaciology. 2014; 55(68): 199-206. doi: 10.3189/2014AoG68A029.
  27. Bowling J.S., Livingstone S.J., Sole A.J., Chu W. Distribution and dynamics of Greenland subglacial lakes. Nature Communications. 2019; 10: 2810. doi: 10.1038/s41467-019-10821-w.
  28. Lukin V.V., Vasiliev N.I. Technological aspects of the final phase of drilling borehole 5G and unsealing Vostok Subglacial Lake, East Antarctica. Annals of Glaciology. 2014; 55(65): 83-89. doi: 10.3189/2014AoG65A002.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Издательство «Наука», 2020

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>