General Strategy for the Search for Life on Mars and an Expedition to the Crater Jezero

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Main features of the Noachain, Hesperian, and Amazonian periods are considered as influence factors on potential contamination/origin, protection, and evolution of microorganisms. Mars evolution during Noachian likely resembled the early evolution of Earth. This potential similarity allows origin of life on Mars. Relatively short Hesperian period was marked by intensive volcanism, fluvial and glacial activity; however environmental conditions on its surface largely overstepped the survival limits and microorganisms were either conserved in permafrost or migrated to deeper water-rich horizons. In Amazonian, Mars represented a frozen desert with very harsh conditions on the surface that was constantly sterilized by the cosmic radiation. The generally unfavorable conditions for the life evolution suggest that primitive organisms, which potentially could be formed on early Mars, were unable to evolve up to complex, multicellular organisms. Ecological niches of modern Mars are considered. Among them, the deep subsurface water horizons and сryopegs have the highest potential for survivability of microorganisms as conditions in these environments are independent from the condition on the surface. Geology of the ancient crater lake Jezero, which is the primary target of the NASA mission Perseverance, are briefly considered. Clay minerals and carbonates within the crater could represent a potential reservoir where possible remnants of microorganisms could be accumulated and stored.

Sobre autores

N. Demidov

Arctic and Antarctic Research Institute

Email: nikdemidov@mail.ru
St.Petersburg, Russia

M. Ivanov

Vernadsky Institute of Geochemistry and Analytical Chemistry, RAS

Email: mikhail_ivanov@brown.edu
Moscow, Russia

Bibliografia

  1. Neukum G., Wise D.U. Mars: A standard crater curve and possible new time scale. Science.1976; 194: 1381–1387.
  2. Bradley R.S. The explosive volcanic eruption signal in Northern hemisphere continental temperature records. Climatic Change. 1988; 12: 221–243.
  3. Schulte P., Alegret L., Arenillas I. et al. The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary. Science. 2010; 327: 1214–1218.
  4. Newsom H.E., Hagerty J.J., Goff F. Mixed hydrothermal fluids and the origin of the Martian soil. Journ. Geophys. Res. 1999; 104(E4): 8717–8728.
  5. Sleep N.H., Zahnle K. Refugia from asteroid impacts on early Mars and the early Earth. Journ.Geophys. Res. 1998; 103: 28529–28544.
  6. Bibring J.P., Langevin Y., Gendrin A.B. et al. Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science. 2005; 307: 1576–1581.
  7. Clifford S.M., Parker T.J. The evolution of the Martian hydrosphere: Implications for the fate of primordial ocean and the current state of the northern plains. Icarus. 2001; 154: 40–79.
  8. Andrews-Hanna J.C., Phillips R.J. Hydrological modeling of outflow channels and chaos regions on Mars. Journ. Geophys. Res. 2007; 112: E08001. doi: 10.1029/2006JE002881.
  9. Parker T.J., Saunders R.S., Schneeberger D.M. Transitional morphology in West Deuteronilus Mensae, Mars: Implication for modification of the Lowland/Upland boundary. Icarus. 1989; 82: 111–145.
  10. Carr M.H., Head J.W. Mars: Formation and fate of a frozen Hesperian ocean. Icarus. 2019; 319: 433–443.
  11. Kreslavsky M.A., Head J.W. Fate of outflow channel effluents in the northern lowlands of Mars: The Vastitas Borrealis Formation as a sublimation residue from frozen ponded bodies of water. Journ. Geophys. Res. 2002; 107(NE12): 5121. doi: 10.1029/2001JE001831.
  12. Berman D.C., Hartmann W.K. Recent fluvial, volcanic and tectonic activity on the Cerberus plains of Mars. Icarus; 2002; 159(1): 1–17.
  13. Neukum G., Jaumann R., Hoffmann H. et al. Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera. Nature. 2004; 432(7020): 971–979.
  14. Laskar J.A., Correia C.M., Gastineau M. et al. Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus. 2004; 170: 343–364.
  15. Head J.W., Marchant D.R. Cold-based mountain glaciers on Mars: Western Arsia Mons. Geology. 2003; 31: 641–645.
  16. Berman D., Chuang F., Smith I., Crown D. Ice-rich landforms of the southern mid-latitudes of Mars: A case study in Nereidum Montes. Icarus. 2021; 355: 114–170.
  17. Nutman A.P., Bennett V.C., Friend C.R.L. et al. Rapid emergence of life shown by discovery of 3,700 million year old microbial structures. Nature. 2016; 537: 535–537.
  18. Демидов Н.Э., Бойнтон У.В., Гиличинский Д.А. и др. Закономерности распределения воды в мерзлотных районах Марса по результатам совместного анализа данных прибора ХЕНД (Марс Одиссей) и МОЛА (Марс Глобал Сервейор). Письма в Астрон. журн. 2008; 34(10): 1–13.
  19. Herkenhoff K.E., Plaut J.J. Surface ages and resurfacing rates of the polar deposits on Mars. Icarus. 2000; 144: 243–253.
  20. Демидов Н.Э., Лукин В.В. Антарктида как полигон для отработки пилотируемых экспедиций на Луну и Марс. Астрономический вестник. 2017; 51(2): 117–135.
  21. Abyzov S.S. Microorganisms in the Antarctic Ice. Antarctic Microbiology. Friedmann E.I. (ed). New York, 1993.
  22. Larsen J., Jensen D. Interior temperatures of the northern polar cap on Mars. Icarus. 2000; 144: 456–462.
  23. Gilichinsky D., Rivkina E., Bakermans C. et al. Biodiversity of Cryopegs in Permafrost. FEMS Microbiology Ecology. 2005; 53(1): 117–128.
  24. Gilichinsky D., Wilson G., Friedmann E. et al. Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology. 2007; 7: 275–311.
  25. Goordial J., Davila A., Lacelle D. et al. Nearing the cold-arid limits of microbial life in permafrost. The ISME journal. 2016; 10(7): 1613–1624.
  26. Демидов Н.Э., Гиличинский Д.А., Миронов В.А., Шмакова Л.А. Криобиосфера Земли и поиск жизни на Марсе. Криосфера Земли. 2012; 16(4): 67–82.
  27. Frey H.V. Ages of very large impact basins on Mars: Implications for the late heavy bombardment in the inner solar system. Geophys. Res. Lett. 2008; 35: L13203. doi: 10.1029/2008GL033515.
  28. Ivanov M.A., Hiesinger H., Erkeling G. et al. Major episodes of geologic history of Isidis Planitia on Mars. Icarus. 2012; 218: 24–46.
  29. Fassett C.I., Head J.W. Fluvial sedimentary deposits on Mars: Ancient deltas in a crater lake in the Nili Fossae region. Geophys. Res. Lett. 2005; 32: L14201. doi: 10.1029/2005GL023456.
  30. Goudge T.A., Mustard J.F., Head J.W. et al. Assessing the mineralogy of the watershed and fan deposits of the Jezero crater paleolake system, Mars. Journal of Geophysical Research Planets. 2015; 120: 775–808.
  31. Salese F., Kleinhans M., Mangold N. et al. Estimated Minimum Life Span of the Jezero Fluvial Delta (Mars). Astrobiology. 2020; 20(8): 977–993.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Издательство «Наука», 2021

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies