Optical Properties of Nanometer Nickel Oxide Epitaxial Films on Linbo3 Substrates

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Semiconductor structures based on nickel oxide grown on LiNbO3 substrates were fabricated using magnetron sputtering. The optical properties of NiO films on LiNbO3 substrates were studied in the wavelength range of 250…800 nm, and transmission and reflection spectra of these structures were simulated. The dispersion of the complex refractive index of the grown films was obtained, which ensures good agreement between the calculated and experimental transmission and reflection curves. These studies made it possible to determine the thickness of the grown epitaxial films using optical methods and compare with the results obtained based on the film growth rate and atomic force microscopy methods.

作者简介

S. Averin

Fryazino branch Kotelnikov Institute of Radio Engineering and Electronics of RAS

Email: sva278@ire216.msk.su
Vvedensky Squar., 1, Fryazino, Moscow region, 141190 Russian Federation

V. Luzanov

Fryazino branch Kotelnikov Institute of Radio Engineering and Electronics of RAS

Email: sva278@ire216.msk.su
Vvedensky Squar., 1, Fryazino, Moscow region, 141190 Russian Federation

V. Zhitov

Fryazino branch Kotelnikov Institute of Radio Engineering and Electronics of RAS

Email: sva278@ire216.msk.su
Vvedensky Squar., 1, Fryazino, Moscow region, 141190 Russian Federation

L. Zaharov

Fryazino branch Kotelnikov Institute of Radio Engineering and Electronics of RAS

Email: sva278@ire216.msk.su
Vvedensky Squar., 1, Fryazino, Moscow region, 141190 Russian Federation

V. Kotov

Fryazino branch Kotelnikov Institute of Radio Engineering and Electronics of RAS

编辑信件的主要联系方式.
Email: sva278@ire216.msk.su
Vvedensky Squar., 1, Fryazino, Moscow region, 141190 Russian Federation

参考

  1. Gupta R.K., Hendi A.A., Cavas M. et al. // Physica E. 2014. V. 56. P. 288.
  2. Hunashimarad Basavaraj G., Bath J.S., Raghavendra P.V., Bhajantri R.F. // Opt. Mater. 2022. V. 124. Article No. 111960.
  3. Steinebach H., Kannan S., Rieth L., Solzbacher F. // Sensors Actuators B: Chemical. 2010. V. 151. № 1. P. 162.
  4. Sato H., Minami T., Takata S., Yamada T. // Thin Solid Films. 1993. V. 236. № 1–2. P. 27.
  5. Lou X.C., Zhao X.J., He X. // Solar Energy. 2009. V. 83. № 12. P. 2103.
  6. Shinde V.R., Gujar T.P., Lokhande C.D. et al. // Mater. Chem. Phys. 2006. V. 96. № 2–3. P. 326.
  7. Park S.-W., Choi J.M., Kim E., Im S. // Appl. Surf. Sci. 2005.V. 244. № 1. P. 439.
  8. Ohta H., Hirano M., Nakahara K. et al. // Appl. Phys. Lett. 2003. V. 83. № 5. P. 1029.
  9. Manjunatha K.N., Paul Sh. // Appl. Surface Sci. 2015. V. 352. P. 10.
  10. Лузанов В.А. // РЭ. 2020. Т. 65. № 12. С. 1206.
  11. Аверин С.В., Лузанов В.А., Житов В.А. и др. // РЭ. 2024. Т. 69. № 9. С. 918.
  12. Choi J.-M., Im S. // Appl. Surface Sci. 2005. V. 244. P. 435.
  13. Ahmed A.A., Devarajan M., Afzal N. // Sensors and Actuators A: Physical. 2017. V. 262. P. 78.
  14. Lin D.Y., Chen W.L., Lin W.C., Shiu J.J., Han J. // Phys. Stat. Sol. С. 2006. V. 3. № 6. P. 1983.
  15. Surender S., Probakaran K., Pradeep S., et al. // Opt. Mater. 2023. V. 136. Article No. 113462.
  16. Аззам Р., Башара Н. Эллипсометрия и поляризованный свет. M.: Мир, 1981. С. 379.
  17. Zelmon D.E., Small D.L., Jundt D. // J. Opt. Soc. Amer. B. 1997. V. 14. № 12. P. 3319.
  18. Malitson I.H. // J. Opt. Soc. Amer. 1965. V. 55. № 10. P. 1205.
  19. Tripathi S.K., Gupta S., Mustafa F. I. et al. // J. Phys.D: Appl.Phys. 2009. V. 42. № 18. Article No. 185404.
  20. Ю П., Кардона М. Основы физики полупроводников. М.: Физматлит, 2002.
  21. Adachi S. Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information, N.Y.: Springer, 1999.
  22. Tauc J. // Mater. Res. Bull. 1968. V. 3. № 1. P. 37.
  23. Hadi A.A., Badr B.A., Mahdi R.O., Khashan K.S. Optic. Int. J. Light and Electron Optics. 2020. V. 219. Article No. 165019.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025