Chemokinin CXCL12 and its receptors CXCR4 and CXCR7 in the progression of breast cancer

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Breast cancer ranks first in terms of cancer incidence and mortality among the female population. The main cause of death from breast cancer, as with other malignant neoplasms, is tumor dissemination and the development of resistance to treatment. Chemokines have been found to play an important role in the progression of malignant neoplasms. In this short review, we describe the current understanding of the role of the most studied chemokine, CXCL12 and its receptors, CXCR4 and CXCR7 in the progression of breast cancer.

全文:

受限制的访问

作者简介

E. Zubareva

Orenburg Regional Clinical Oncology Center; Orenburg State Medical University

编辑信件的主要联系方式.
Email: tishkova_evgeniy@mail.ru
俄罗斯联邦, Orenburg, 460021; Orenburg, 460000

M. Senchukova

Orenburg Regional Clinical Oncology Center; Orenburg State Medical University

Email: tishkova_evgeniy@mail.ru
俄罗斯联邦, Orenburg, 460021; Orenburg, 460000

N. Saidler

Orenburg Regional Clinical Oncology Center

Email: tishkova_evgeniy@mail.ru
俄罗斯联邦, Orenburg, 460021

参考

  1. Ганцев Ш. Х., Пухов А.Г., Хуснутдинова Э.К., Галеев М.Г., Ганцев К.Ш., Ишмуратова Р.Ш., Исламгулов Д.В., Фролова В.Ю., Кзыргалин Ш.Р., Мусин Ш.И., Халикова Л.В. 2012. Неолимфогенез и профиль экспрессии хемокинов при раке молочной железы. Креативная хирургия и онкология. № 1. С. 4. (Gancev S.H., Puhov A.G., Husnutdinova E.K., Galeev M.G., Gancev K.S., Ishmuratova R.S., Islamgulov D.V., Frolova V.YU., Kzyrgalin SH.R., Musin SH.I., Halikova L.V. 2012. Neolimfogenez i profil’ ekspressii hemokinov pri rake molochnoj zhelezy. Kreativnaya hirurgiya i onkologiya, № 1. P. 4.).
  2. Каприн А.Д., Старинский В.В., Шахзадова А.О. 2021. Злокачественные новообразования в России в 2020 году (заболеваемость и смертность). Москва: МНИОИ им. П.А. Герцена. (Kaprin A.D., Starinskij V.V., Shahzadova A.O. 2021. Zlokachestvennye novoobrazovaniya v Rossii v 2020 godu (zabolevaemost’ i smertnost’). Moskva: MNIOI im. P.A. Gercena.)
  3. Стукань А.И., Горяинова А.Ю., Шаров С.В., Андреев Д.В., Лымарь Е.В. 2021. Механизмы метастазирования и развития резистентности к терапии при раке молочной железы. Клинический случай эффективности иксабепилона при формировании множественной лекарственной устойчивости гормон-рецептор-позитивного рака молочной железы. Медицинский совет. № 20. С. 54. (Stukan’ A.I., Goryainova A.Y., Sharov S.V., Andreev D.V., Lymar’ E.V. 2021. Mekhanizmy metastazirovaniya i razvitiya rezistentnosti k terapii pri rake molochnoj zhelezy. Klinicheskij sluchaj effektivnosti iksabepilona pri formirovanii mnozhestvennoj lekarstvennoj ustojchivosti gormon-receptor-pozitivnogo raka molochnoj zhelezy. Medicinskij Sovet. № 20. P. 54.) https://doi.org/10.21518/2079-701X-2021-20-54-61
  4. Agarwal U., Ghalayini W., Dong F., Weber K., Zou Y.R., Rabbany S.Y., Rafii S., Penn M.S. 2010. Role of cardiac myocyte CXCR4 expression in development and left ventricular remodeling after acute myocardial infarction. Circ Res. V. 107. P. 667. https://doi.org/10.1161/CIRCRESAHA.110.223289
  5. Aversa I., Zolea F., Ieranò C., Bulotta S., Trotta A.M., Faniello M.C., De Marco C., Malanga D., Biamonte F., Viglietto G., Cuda G., Scala S., Costanzo F. 2017. Epithelial-to-mesenchymal transition in FHC-silenced cells: the role of CXCR4/CXCL12 axis. J. Exp. Clin. Cancer Res. V. 36. P. 104. https://doi.org/10.1186/s13046-017-0571-8
  6. Bianchi M.E., Mezzapelle R. 2020. The Chemokine Receptor CXCR4 in Cell Proliferation and Tiss. Regenerat. FrontImmunol. V. 11. P. 2109. https://doi.org/10.3389/fimmu.2020.02109
  7. Boesch M., Onder L., Cheng H.W., Novkovic M., Mörbe U., Sopper S., Gastl G., Jochum W., Ruhstaller T., Knauer M., Ludewig B. 2018. Interleukin 7-expressing fibroblasts promote breast cancer growth through sustenance of tumor cell stemness. Oncoimmunol. V. 7. P. e1414129. https://doi.org/10.1080/2162402X.2017.1414129
  8. Boimel P.J., Smirnova T., Zhou Z.N., Wyckoff J., Park H., Coniglio S.J., Qian B.Z., Stanley E.R., Cox D., Pollard J.W., Muller W.J., Condeelis J., Segall J.E. 2012. Contribution of CXCL12 secretion to invasion of breast cancer cells. Breast Cancer Res. V. 14. P. R23. https://doi.org/10.1186/bcr3108
  9. Bolitho C., Hahn M.A., Baxter R.C., Marsh D.J. 2010. The chemokine CXCL1 induces proliferation in epithelial ovarian cancer cells by transactivation of the epidermal growth factor receptor. Endocr. Relat. Cancer. V. 17. P. 929. https://doi.org/10.1677/ERC-10-0107
  10. Cambier S., Gouwy M., Proost P. 2023. The chemokines CXCL8 and CXCL12: molecular and functional properties, role in disease and efforts towards pharmacological intervention. Cell. Mol. Immunol. 2023. V. 20. P. 217. https://doi.org/10.1038/s41423-023-00974-6
  11. Chang C.W., Seibel A.J., Avendano A., Cortes-Medina M.G., Song J.W. 2020. Distinguishing specific CXCL12 isoforms on their angiogenesis and vascular permeability promoting properties. Adv. Healthcare Mater. V. 9. Art. ID e1901399. https://doi.org/10.1002/adhm.201901399
  12. Chatterjee S., Behnam Azad B., Nimmagadda S. 2014. The intricate role of CXCR4 in cancer. Adv. Cancer Res. V. 124. P. 31. https://doi.org/10.1016/B978-0-12-411638-2.00002-1
  13. Chen H.J., Edwards R., Tucci S., Bu P., Milsom J., Lee S., Edelmann W., Gümüs Z.H., Shen X., Lipkin S. 2012. Chemokine 25-induced signaling suppresses colon cancer invasion and metastasis. J. Clin. Invest. V. 122. P. 3184. https://doi.org/10.1172/JCI62110
  14. Chen I.X., Chauhan V.P., Posada J., Ng M.R., Wu M.W., Adstamongkonkul P., Huang P., Lindeman N., Langer R., Jain R.K. 2019. Blocking CXCR4 alleviates desmoplasia, increases T-lymphocyte infiltration, and improves immunotherapy in metastatic breast cancer. Proc. Natl. Acad. Sci. USA. V. 116. P. 4558. https://doi.org/10.1073/pnas.1815515116
  15. Cheng Y.H., Eby J.M., LaPorte H.M., Volkman B.F., Majetschak M. 2017. Effects of cognate, non-cognate and synthetic CXCR4 and ACKR3 ligands on human lung endothelial cell barrier function. PLoS One. V. 12. Art. ID e0187949. https://doi.org/10.1371/journal.pone.0187949
  16. Chung B., Esmaeili A.A., Gopalakrishna-Pillai S., Murad J.P., Andersen E.S., Kumar Reddy N., Srinivasan G., Armstrong B., Chu C., Kim Y., Tong T., Waisman J., Yim J.H., Badie B., Lee P.P. 2017. Human brain metastatic stroma attracts breast cancer cells via chemokines CXCL16 and CXCL12. NPJ Breast Cancer. V. 3. P. 6. https://doi.org/ 10.1038/s41523-017-0008-8
  17. Costa A., Kieffer Y., Scholer-Dahirel A., Pelon F., Bourachot B., Cardon M., Sirven P., Magagna I., Fuhrmann L., Bernard C., Bonneau C., Kondratova M., Kuperstein I., Zinovyev A., Givel A.M., Parrini M.C., Soumelis V., Vincent-Salomon A., Mechta-Grigoriou F. 2018. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell. V. 33. P. 463. https://doi.org/10.1016/j.ccell.2018.01.011
  18. Cui L., Qu H., Xiao T., Zhao M., Jolkkonen J., Zhao C. 2013. Stromal cell-derived factor-1 and its receptor CXCR4 in adult neurogenesis after cerebral ischemia. Restor. Neurol. Neurosci. V. 31. P. 239. https://doi.org/10.3233/RNN-120271
  19. D’Alterio C., Buoncervello M., Ieranò C., Napolitano M., Portella L., Rea G., Barbieri A., Luciano A., Scognamiglio G., Tatangelo F., Anniciello A.M., Monaco M., Cavalcanti E., Maiolino P., Romagnoli G., Arra C., Botti G., Gabriele L., Scala S. 2019. Targeting CXCR4 potentiates anti-PD-1 efficacy modifying the tumor microenvironment and inhibiting neoplastic PD-1. J. Exp. Clin. Cancer Res. V. 38. P. 432. https://doi.org/ 10.1186/s13046-019-1420-8
  20. Daniel S.K., Seo Y.D., Pillarisetty V.G. 2020. The CXCL12-CXCR4/CXCR7 axis as a mechanism of immune resistance in gastrointestinal malignancies. Semin. Cancer Biol. V. 65. P. 176. https://doi.org/10.1016/j.semcancer.2019.12.007
  21. De Oliveira K.B., Guembarovski R.L., Guembarovski A.M., da Silva do Amaral Herrera A.C., Sobrinho W.J., Ariza C.B., Watanabe M.A. 2013. CXCL12, CXCR4 and IFNγ genes expression: implications for proinflammatory microenvironment of breast cancer. Clin. Exper. Med. V. 13. P. 211. https://doi.org/10.1007/s10238-012-0194-5
  22. Döring Y., van der Vorst E.P.C., Duchene J., Jansen Y., Gencer S., Bidzhekov K., Atzler D., Santovito D., Rader D.J., Saleheen D., Weber C. 2019. CXCL12 derived from endothelial cells promotes atherosclerosis to drive coronary artery disease. Circulation. V. 139. P. 1338. https://doi.org/10.1161/CIRCULATIONAHA. 118.037953
  23. Dubrovska A., Hartung A., Bouchez L.C., Walker J.R., Reddy V.A., Cho C.Y., Schultz P.G. 2012. CXCR4 activation maintains a stem cell population in tamoxifen-resistant breast cancer cells through AhR signalling. British J. Cancer. V. 107. P. 43. https://doi.org/10.1038/bjc.2012.105
  24. Elias S., Sharma R., Schizas M., Valdez I., Rampersaud S., Park S.M., Gonzalez-Figueroa P., Li Q.Z., Hoyos B., Rudensky A.Y. 2022. CXCR4+ Treg cells control serum IgM levels and natural IgM autoantibody production by B-1 cells in the bone marrow. J. Exper. Med. V. 219. Art. ID e20220047. https://doi.org/10.1084/jem.20220047
  25. Esposito A., Klüppel M., Wilson B.M., Meka S.R.K., Spagnoli A. 2023. CXCR4 mediates the effects of IGF-1R signaling in rodent bone homeostasis and fracture repair. Bone. V. 166. Art. ID 116600. https://doi.org/10.1016/j.bone.2022.116600
  26. Fang Y.Y., Lyu F., Abuwala N., Tal A., Chen A.Y., Taylor H.S., Tal R. 2022. Chemokine C-X-C receptor 4 mediates recruitment of bone marrow-derived nonhematopoietic and immune cells to the pregnant uterus†. Biol. Reprod. V. 106. P. 1083. https://doi.org/10.1093/biolre/ioac029
  27. Feig C., Jones J.O., Kraman M., Wells R.J., Deonarine A., Chan D.S., Connell C.M., Roberts E.W., Zhao Q., Caballero O.L., Teichmann S.A., Janowitz T., Jodrell D.I., Tuveson D.A., Fearon D.T. 2013. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl. Acad. Sci. USA. V. 110. P. 20212. https://doi.org/10.1073/pnas.1320318110
  28. Gadalla R., Hassan H., Ibrahim S.A., Abdullah M.S., Gaballah A., Greve B., El-Deeb S., El-Shinawi M., Mohamed M.M. 2019. Tumor microenvironmental plasmacytoid dendritic cells contribute to breast cancer lymph node metastasis via CXCR4/SDF-1 axis. Breast Cancer Res. Treat. V. 174. P. 679. https://doi.org/10.1007/s10549-019-05129-8
  29. Gao D., Tang T., Zhu J., Tang Y., Sun H., Li S. 2019. CXCL12 has therapeutic value in facial nerve injury and promotes Schwann cells autophagy and migration via PI3K-AKT-mTOR signal pathway. Int. J. Biol. Macromol. V. 124. P. 460. https://doi.org/10.1016/j.ijbiomac.2018.10.212
  30. Ghosh M.C., Makena P.S., Gorantla V., Sinclair S.E., Waters C.M. 2012. CXCR4 regulates migration of lung alveolar epithelial cells through activation of Rac1 and matrix metalloproteinase-2. Am. J. Physiol. Lung Cell Mol. Physiol. V. 302. P. 846. https://doi.org/10.1152/ajplung.00321.2011
  31. Gu Y., Liu Y., Fu L., Zhai L., Zhu J., Han Y., Jiang Y., Zhang Y., Zhang P., Jiang Z., Zhang X., Cao X. 2019. Tumor-educated B cells selectively promote breast cancer lymph node metastasis by HSPA4-targeting IgG. Nat. Med. V. 25. P. 312. https://doi.org/10.1038/s41591-018-0309-y
  32. Harbeck N., Penault-Llorca F., Cortes J., Gnant M., Houssami N., Poortmans P., Ruddy K., Tsang J., Cardoso F. 2019. Breast Cancer. Nat. Rev. Dis. Primers. V. 5. P. 66. https://doi.org/10.1038/s41572-019-0111-2
  33. Heinrich E.L., Lee W., Lu J., Lowy A.M., Kim J. 2012. Chemokine CXCL12 activates dual CXCR4 and CXCR7-mediated signaling pathways in pancreatic cancer cells. J. Translat. Med. V. 10. P. 68. https://doi.org/10.1186/1479-5876-10-68
  34. Janssens R., Struyf S., Proost P. 2018. Pathological roles of the homeostatic chemokine CXCL12. Cytokine growth factor Rev. V. 44. P. 51. https://doi.org/10.1016/j.cytogfr.2018.10.004
  35. Janssens R., Struyf S., Proost P. 2018. The unique structural and functional features of CXCL12. Cell. Mol. Immunol. V. 15. P. 299. https://doi.org/10.1038/cmi.2017.107
  36. Khare T., Bissonnette M., Khare S. 2021. CXCL12-CXCR4/CXCR7 Axis in colorectal cancer: therapeutic target in preclinical and clinical studies. Int. J. Mol. Sci. V. 22. Art. ID 7371. https://doi.org/10.3390/ijms22147371
  37. Kim H., Sung J., Kim H., Ryu H., Cho Park H., Oh Y.K., Lee H.S., Oh K.H., Ahn C. 2019. Expression and secretion of CXCL12 are enhanced in autosomal dominant polycystic kidney disease. BMB Rep. V. 52. P. 463. https://doi.org/10.5483/BMBRep.2019.52.7.112
  38. Kobayashi K., Sato K., Kida T., Omori K., Hori M., Ozaki H., Murata T. 2014. Stromal cell-derived factor-1α/C-X-C chemokine receptor type 4 axis promotes endothelial cell barrier integrity via phosphoinositide 3-kinase and Rac1 activation. Arterioscler. Thromb. Vasc Biol. V. 34. P. 1716. https://doi.org/10.1161/ATVBAHA.114.303890
  39. Kong L., Guo S., Liu C., Zhao Y., Feng C., Liu Y., Wang T., Li C. 2016. Overexpression of SDF-1 activates the NF-κB pathway to induce epithelial to mesenchymal transition and cancer stem cell-like phenotypes of breast cancer cells. Int. J. Oncol. V. 48. Art. ID 1085. https://doi.org/10.3892/ijo.2016.3343
  40. Li S., Fan Y., Kumagai A., Kawakita E., Kitada M., Kanasaki K., Koya D. 2020. Deficiency in dipeptidyl peptidase-4 promotes chemoresistance through the CXCL12/CXCR4/mTOR/TGFβ signaling pathway in breast cancer cells. Int. J. Mol. Sci. V. 21. Art. ID 805. https://doi.org/10.3390/ijms21030805
  41. Lu G., Qiu Y., Su X. 2021. Targeting CXCL12-CXCR4 Signaling enhances immune checkpoint blockade therapy against triple negative breast cancer. Eur. J. Pharm. Sci. V. 157. Art. ID 105606. https://doi.org/10.1016/j.ejps.2020.105606
  42. Marcuzzi E., Angioni R., Molon B., Calì B. 2018. Chemokines and chemokine receptors: orchestrating tumor metastasization. Int. J. Mol. Sci. V. 20. Art. ID 96. https://doi.org/10.3390/ijms20112651
  43. McQuade A., Kang Y.J., Hasselmann J., Jairaman A., Sotelo A., Coburn M., Shabestari S.K., Chadarevian J.P., Fote G., Tu C.H., Danhash E., Silva J., Martinez E., Cotman C., Prieto G.A., Thompson L.M., Steffan J.S., Smith I., Davtyan H., Cahalan M., Cho H., Blurton-Jones M. 2020. Gene expression and functional deficits underlie TREM2-knockout microglia responses in human models of Alzheimer’s disease. Nat. Commun. V. 11. P. 5370. https://doi.org/10.1038/s41467-023-36930-1
  44. Miao R., Lim V.Y., Kothapalli N., Ma Y., Fossati J., Zehentmeier S., Sun R., Pereira J.P. 2020. Hematopoietic stem cell niches and signals controlling immune cell development and maintenance of immunological memory. Front. Immunol. V. 11. Art. ID 600127. https://doi.org/10.3389/fimmu.2020.600127
  45. Morein D., Erlichman N., Ben-Baruch A. 2020. Beyond cell motility: the expanding roles of chemokines and their receptors in malignancy. Front Immunol. V. 11. P. 952. https://doi.org/10.3389/fimmu.2020.00952
  46. Mukherjee D., Zhao J. 2013. The role of chemokine receptor CXCR4 in breast cancer metastasis. Am. J. Cancer Res. V. 3. P. 46.
  47. Murad H.A.S., Rafeeq M.M., Alqurashi T.M.A. 2021. Role and implications of the CXCL12/CXCR4/CXCR7 axis in atherosclerosis: still a debate. Ann. Med. V. 53. P. 1598. https://doi.org/10.1080/07853890.2021.1974084
  48. Okuyama Kishima M., de Oliveira C.E., Banin-Hirata B.K., Losi-Guembarovski R., Brajão de Oliveira K., Amarante M.K., Watanabe M.A. 2015. Immunohistochemical expression of CXCR4 on breast cancer and its clinical significance. Anal. Cell. Pathol. (Amst). V. 2015. P. 891020. https://doi.org/10.1155/2015/891020
  49. Price T.T., Burness M.L., Sivan A., Warner M.J., Cheng R., Lee C.H., Olivere L., Comatas K., Magnani J., Kim Lyerly H., Cheng Q., McCall C.M., Sipkins D.A. 2016. Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone. Sci. Transl. Med. V. 8. Art. ID 340ra73. https://doi.org/10.1126/scitranslmed.aad4059
  50. Rajagopal S., Kim J., Ahn S., Craig S., Lam C.M., Gerard N.P., Gerard C., Lefkowitz R.J. 2010. Beta-arrestin- but not G protein-mediated signaling by the “decoy” receptor CXCR7. Proc. Natl. Acad. Sci. USA. V. 107. P. 628. https://doi.org/10.1073/pnas.0912852107
  51. Raman D., Sobolik-Delmaire T., Richmond A. 2011. Chemokines in health and disease. Exp. Cell Res. V. 317. P. 575. https://doi.org/10.1016/j.yexcr.2011.01.005
  52. Ramos E.A., Grochoski M., Braun-Prado K., Seniski G.G., Cavalli I.J., Ribeiro E.M., Camargo A.A., Costa F.F., Klassen G. 2011. Epigenetic changes of CXCR4 and its ligand CXCL12 as prognostic factors for sporadic breast cancer. PLoS One. V. 6. Art. ID e29461. https://doi.org/10.1371/journal.pone.0029461
  53. Righetti A., Giulietti M., Šabanović B., Occhipinti G., Principato G., Piva F. 2019. CXCL12 and Its isoforms: different roles in pancreatic cancer? J. Oncol. V. 2019. Art. ID 9681698. https://doi.org/10.1155/2019/9681698
  54. Rot A., von Andrian U.H. 2004. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu. Rev. Immunol. V. 22. P. 891. https://doi.org/10.1146/annurev.immunol.22.012703
  55. Sainz J., Sata M. 2007. CXCR4, a key modulator of vascular progenitor cells. Arterioscler. Thromb. Vasc. Biol. V. 27. P. 263. https://doi.org/10.1161/01.ATV.0000256727.34148.e2
  56. Sayyed S.G., Hägele H., Kulkarni O.P., Endlich K., Segerer S., Eulberg D., Klussmann S., Anders H.J. 2009. Podocytes produce homeostatic chemokine stromal cell-derived factor-1/CXCL12, which contributes to glomerulosclerosis, podocyte loss and albuminuria in a mouse model of type 2 diabetes. Diabetologia. V. 52. P. 2445. https://doi.org/10.1007/s00125-009-1493-6
  57. Scala S. 2015. Molecular Pathways: Targeting the CXCR4-CXCL12 Axis–untapped potential in the tumor microenvironment. Clin Cancer Res. V. 21. P. 4278. https://doi.org/10.1158/1078-0432.CCR-14-0914
  58. Scherz-Shouval R., Santagata S., Mendillo M.L., Sholl L.M., Ben-Aharon I., Beck A.H., Dias-Santagata D., Koeva M., Stemmer S.M., Whitesell L., Lindquist S. 2014. The reprogramming of tumor stroma by HSF1 is a potent enabler of malignancy. Cell. V. 158. P. 564. https://doi.org/10.1016/j.cell.2014.05.045
  59. Shi Y., Riese D.J., Shen J. 2020. The Role of the CXCL12/CXCR4/CXCR7 chemokine axis in cancer. Front. Pharmacol. V. 11. Art. ID 574667. https://doi.org/10.3389/fphar.2020.574667
  60. Song J.K., Park M.H., Choi D.Y., Yoo H.S., Han S.B., Yoon D.Y., Hong J.T. 2012. Deficiency of C-C chemokine receptor 5 suppresses tumor development via inactivation of NF-κB and upregulation of IL-1Ra in melanoma model. PLoS One. V. 7. Art. ID e33747. https://doi.org/10.1371/journal.pone.0033747
  61. Stone M.J., Hayward J.A., Huang C., Huma Z., Sanchez J. 2017. Mechanisms of regulation of the chemokine-receptor network. Int. J. Mol. Sci. V. 18. P. 342. https://doi.org/10.3390/ijms18020342
  62. Strazza M., Azoulay-Alfaguter I., Peled M., Smrcka A.V., Skolnik E.Y., Srivastava S., Mor A. 2017. PLCε1 regulates SDF-1α-induced lymphocyte adhesion and migration to sites of inflammation. Proc. Natl. Acad. Sci. USA. V. 114. P. 2693. https://doi.org/10.1073/pnas.1612900114
  63. Su H., Sobrino Najul E.J., Toth T.A., Ng C.M., Lelievre S.A., Fred M., Tang C.K. 2011. Chemokine receptor CXCR4-mediated transformation of mammary epithelial cells by enhancing multiple RTKs expression and deregulation of the p53/MDM2 axis. Cancer Lett. V. 307. P. 132. https://doi.org/10.1016/j.canlet.2011.03.025
  64. Tang X., Li X., Li Z., Liu Y., Yao L., Song S., Yang H., Li C. 2016. Downregulation of CXCR7 inhibits proliferative capacity and stem cell-like properties in breast cancer stem cells. Tumour. Biol. V. 37. P. 13425. https://doi.org/10.1007/s13277-016-5180-1
  65. Tang X., Tu G., Yang G., Wang X., Kang L., Yang L., Zeng H., Wan X., Qiao Y., Cui X., Liu M., Hou Y. 2019. Autocrine TGF-β1/miR-200s/miR-221/DNMT3B regulatory loop maintains CAF status to fuel breast cancer cell proliferation. Cancer Lett. V. 452. P. 79. https://doi.org/10.1016/j.canlet.2019.02.044
  66. Thakar D., Dalonneau F., Migliorini E., Lortat-Jacob H., Boturyn D., Albiges-Rizo C., Coche-Guerente L., Picart C., Richter R.P. 2017. Binding of the chemokine CXCL12α to its natural extracellular matrix ligand heparan sulfate enables myoblast adhesion and facilitates cell motility. Biomaterials. V. 123. P. 24. https://doi.org/10.1016/j.biomaterials.2017.01.022
  67. Tung S.Y., Chang S.F., Chou M.H., Huang W.S., Hsieh Y.Y., Shen C.H., Kuo H.C., Chen C.N. 2012. CXC chemokine ligand 12/stromal cell-derived factor-1 regulates cell adhesion in human colon cancer cells by induction of intercellular adhesion molecule-1. J. Biomed. Sci. V. 19. Art. ID 91. https://doi.org/10.1186/1423-0127-19-91
  68. Wang Y., Gao F. 2023. Research progress of CXCR4-targeting radioligands for oncologic imaging. Korean J. Radiol. V. 24. P. 871. https://doi.org/10.3348/kjr.2023.0091
  69. Wani N., Nasser M.W., Ahirwar D.K., Zhao H., Miao Z., Shilo K., Ganju R.K. 2014. C-X-C motif chemokine 12/C-X-C chemokine receptor type 7 signaling regulates breast cancer growth and metastasis by modulating the tumor microenvironment. Breast Cancer Res. V. 16. Art. ID R54. https://doi.org/10.1186/bcr3665
  70. Wei C.Y., Zhu M.X., Lu N.H., Liu J.Q., Yang Y.W., Zhang Y., Shi Y.D., Feng Z.H., Li J.X., Qi F.Z., Gu J.Y. 2020. Circular RNA circ_0020710 drives tumor progression and immune evasion by regulating the miR-370-3p/CXCL12 axis in melanoma. Mol. Cancer. V. 19. P. 84. https://doi.org/10.1186/s12943-020-01191-9
  71. Wendel C., Hemping-Bovenkerk A., Krasnyanska J., Mees S.T., Kochetkova M., Stoeppeler S., Haier J. 2012. CXCR4/CXCL12 participate in extravasation of metastasizing breast cancer cells within the liver in a rat model. PLoS One. V. 7. Art. ID e30046. https://doi.org/10.1371/journal.pone.0030046
  72. Wu B., Chien E.Y., Mol C.D., Fenalti G., Liu W., Katritch V., Abagyan R., Brooun A., Wells P., Bi F.C., Hamel D.J., Kuhn P., Handel T.M., Cherezov V., Stevens R.C. 2010. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science. V. 330. P. 1066. https://doi.org/10.1126/science.1194396
  73. Yamada K., Maishi N., Akiyama K., Towfik Alam M., Ohga N., Kawamoto T., Shindoh M., Takahashi N., Kamiyama T., Hida Y., Taketomi A., Hida K. 2015. CXCL12-CXCR7 axis is important for tumor endothelial cell angiogenic property. Int. J. Cancer. V. 137. Art. ID 2825. https://doi.org/10.1002/ijc.29655
  74. Yang F., Takagaki Y., Yoshitomi Y., Ikeda T., Li J., Kitada M., Kumagai A., Kawakita E., Shi S., Kanasaki K., Koya D. 2019. Inhibition of dipeptidyl peptidase-4 accelerates epithelial-mesenchymal transition and breast cancer metastasis via the CXCL12/CXCR4/mTOR axis. Cancer Res. V. 79. P. 735. https://doi.org/10.1158/0008-5472.CAN-18-0620
  75. Yang Y., Li J., Lei W., Wang H., Ni Y., Liu Y., Yan H., Tian Y., Wang Z., Yang Z., Yang S., Yang Y., Wang Q. 2023. CXCL12-CXCR4/CXCR7 axis in cancer: from mechanisms to clinical applications. Int. J. Biol. Sci. V. 19. Art. ID 3341. https://doi.org/10.7150/ijbs.82317
  76. Yu J., Zhou X., Shen L. 2023. CXCR4-targeted radiopharmaceuticals for the imaging and therapy of malignant tumors. Molecules. V. 28. Art. ID 4707. https://doi.org/10.3390/molecules28124707
  77. Yu P.F., Huang Y., Xu C.L., Lin L.Y., Han Y.Y., Sun W.H., Hu G.H., Rabson A.B., Wang Y., Shi Y.F. 2017. Downregulation of CXCL12 in mesenchymal stromal cells by TGFβ promotes breast cancer metastasis. Oncogene. V. 36. P. 840. https://doi.org/10.1038/onc.2016.252
  78. Zeng Y., Li B., Liang Y., Reeves P.M., Qu X., Ran C., Liu Q., Callahan M.V., Sluder A.E., Gelfand J.A., Chen H., Poznansky M.C. 2019. Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumor-bearing mice by prevention of immunosuppression in the tumor microenvironment. FASEB J. V. 33. P. 6596. https://doi.org/10.1096/fj.201802067RR
  79. Zhang J., Chen J., Wo D., Yan H., Liu P., Ma E., Li L., Zheng L., Chen D, Yu Z., Liang C., Peng J., Ren D.N., Zhu W. 2019. LRP6 Ectodomain prevents SDF-1/CXCR4-induced breast cancer metastasis to lung. Clin. Cancer Res. V. 25. P. 4832. https://doi.org/10.1158/1078-0432.CCR-18-3557
  80. Zhang M., Qiu L., Zhang Y., Xu D., Zheng J.C., Jiang L. 2017. CXCL12 enhances angiogenesis through CXCR7 activation in human umbilical vein endothelial cells. Sci. Rep. V. 7. P. 8289. https://doi.org/10.1038/s41598-017-08840-y
  81. Zhou W., Guo S., Liu M., Burow M.E., Wang G. 2019. Targeting CXCL12/CXCR4 axis in tumor immunotherapy. Curr. Med. Chem. V. 26. P. 3026. https://doi.org/10.2174/0929867324666170830111531
  82. Zielińska K.A., Katanaev V.L. 2020. The signaling duo CXCL12 and CXCR4: chemokine fuel for breast cancer tumorigenesis. Cancers (Basel). V. 12. Art. ID 3071. https://doi.org/10.3390/cancers12103071
  83. Zou Y.R., Kottmann A.H., Kuroda M., Taniuchi I., Littman D.R. 1998. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature. V. 393. P. 595. https://doi.org/10.1038/31269

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024