Study of the solar neutrino interaction with 128,130Te nuclei and the large Baksan neutrino telescope project

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The interaction of neutrinos with tellurium nuclei 128 and 130 has been studied, taking into account the influence of charge-exchange resonances. The paper presents calculations of the cross section of solar neutrino capture σ(Eν) by the isotopes 128Te and 130Te. Both experimental data on the strength functions S(E), obtained in the charge-exchange reaction (3He, t) and the S(E) functions calculated within the framework of the microscopic theory of finite Fermi-systems were used. The influence of the resonant structure S(E) on the calculated capture cross sections of solar neutrinos was studied and the contributions of each of the high-lying resonances to the capture cross section σ(Eν) were identified. The contributions of all components of the solar neutrino spectrum were calculated. The contribution of background solar neutrinos to the double beta decay of 130Те nuclei was estimated.

About the authors

Yu. S. Lutostansky

National Research Centre “Kurchatov Institute”

Email: lutostanskiy@yandex.ru
Moscow, Russia

A. N. Fazliakhmetov

National Research Centre “Kurchatov Institute”; Institute for Nuclear Research of the Russian Academy of Sciences

Email: fazliakhmetov@phystech.edu
Moscow, Russia; Moscow, Russia

B. K. Lubsandorzhiev

Institute for Nuclear Research of the Russian Academy of Sciences

Moscow, Russia

G. A. Koroteev

Institute for Nuclear Research of the Russian Academy of Sciences

Moscow, Russia

V. N. Tikhonov

National Research Centre “Kurchatov Institute”

Moscow, Russia

References

  1. J. A. Formaggio and G. P. Zeller, Rev. Mod. Phys. 84, 1307 (2012).
  2. Дж. Бакал, Нейтринная астрофизика (Мир, Москва, 1993) [J. N. Bahcall, Neutrino Astrophysics (Cambridge Univ. Press, Cambridge, 1989)].
  3. J. Billard, E. Figueroa-Feliciano, and L. Strigari, Phys. Rev. D 89, 023524 (2014).
  4. M. J. Dolinski, A. W. P. Poon, and W. Rodejohann, Ann. Rev. Nucl. Part. Sci. 69, 219 (2019).
  5. D. Frekers and M. Alanssari, Eur. Phys. J. A 54, 177 (2018).
  6. Yu. S. Lutostansky and N. B. Shul’gina, Phys. Rev. Lett. 67, 430 (1991).
  7. Ю. С. Лютостанский, В. Н. Тихонов, ЯФ 81, 515 (2018) [Phys. At. Nucl. 81, 540 (2018)].
  8. Yu. S. Lutostansky, EPJ Web Conf. 194, 02009 (2018).
  9. Ю. С. Лютостанский, ЯФ 82, 440 (2019) [Phys. At. Nucl. 82, 528 (2019)].
  10. Ю. В. Гапонов, Ю. С. Лютостанский, Письма в ЖЭТФ 15, 173 (1972) [JETP Lett. 15, 120 (1972)].
  11. R. R. Doering, A. Galonsky, D. M. Patterson, and G. F. Bertsch, Phys. Rev. Lett. 35, 1691 (1975).
  12. A. Galonsky, R. R. Doering, D. M. Patterson, and H. W. Bertini, Phys. Rev. C 14, 748(R) (1976).
  13. Ю. В. Гапонов, Ю. С. Лютостанский, ЯФ 16, 484 (1972) [Sov. J. Nucl. Phys. 16, 270 (1972)].
  14. Ю. С. Лютостанский, Письма в ЖЭТФ 106, 9 (2017) [JETP Lett. 106, 7 (2017)].
  15. Ю. С. Лютостанский, Г. А. Коротеев, А. Ю. Лютостанский, А. П. Осипенко, В. Н. Тихонов, А. Н. Фазлиахметов, ЭЧАЯ 54, 545 (2023) [Phys. Part. Nucl. 54, 436 (2023)].
  16. M. G. Inghram and J. H. Reynolds, Phys. Rev. 76, 1265 (1949).
  17. M. G. Inghram and J. H. Reynolds, Phys. Rev. 78, 822 (1950).
  18. M. Wang, W. J. Huang, F. G. Kondev, G. Audi, and S. Naimi, Chin. Phys. C 45, 30003 (2021).
  19. A. S. Inácio (on behalf of the SNO+ Collab.), PoS (PANIC2021) 274 (2022).
  20. S. Andringa, E. Arushanova, S. Asahi, M. Askins, D. J. Auty, A. R. Back, Z. Barnard, N. Barros, E. W. Beier, A. Bialek, S. D. Biller, E. Blucher, R. Bonventre, D. Braid, E. Caden, E. Callaghan, et al., Adv. High Energy Phys. 2016, 6194250 (2016).
  21. C. Alduino, K. Alfonso, D. R. Artusa, F. T. Avignone III, O. Azzolini, M. Balata, T. I. Banks, G. Bari, J. W. Beeman, F. Bellini, A. Bersani, D. Biare, M. Biassoni, F. Bragazzi, C. Brofferio, A. Buccheri, et al., JINST 11, P07009 (2016).
  22. D. Q. Adams et al. (CUORE Collab.), Phys. Rev. Lett. 124, 122501 (2020).
  23. D. Q. Adams, C. Alduino, K. Alfonso, F. T. Avignone III, O. Azzolini, G. Bari, F. Bellini, G. Benato, M. Biassoni, A. Branca, C. Brofferio, C. Bucci, J. Camilleri, A. Caminata, A. Campani, L. Canonica, et al., Phys. Rev. Lett. 126, 171801 (2021).
  24. J. Ebert et al. (COBRA Collab.), Phys. Rev. C 94, 024603 (2016).
  25. R. Arnold et al. (NEMO-3 Collab.), Phys. Rev. Lett. 107, 062504 (2011).
  26. N. A. Ushakov, A. N. Fazliakhmetov, A. M. Gangapshev, V. N. Gavrin, T. V. Ibragimova, M. M. Kochkarov, V. V. Kazalov, D. Yu. Kudrin, V. V. Kuzminov, B. K. Lubsandorzhiev, A. D. Lukanov, Yu. M. Malyshkin, G. Ya. Novikova, V. B. Petkov, A. A. Shikhin, A. Yu. Sidorenkov, et al., J. Phys.: Conf. Ser. 1787, 012037 (2021).
  27. P. Puppe, A. Lennarz, T. Adachi, H. Akimune, H. Ejiri, D. Frekers, H. Fujita, Y. Fujita, M. Fujiwara, E. Ganioğlu, E.-W. Grewe, K. Hatanaka, R. Hodak, C. Iwamoto, N. T. Khai, A. Okamoto, et al., Phys. Rev. C 86, 044603 (2012).
  28. A. N. Fazliakhmetov, Yu. S. Lutostansky, B. K. Lubsandorzhiev, G. A. Koroteev, A. Yu. Lutostansky, and V. N. Tikhonov, Phys. At. Nucl. 86, 736 (2023).
  29. K. Pham, J. Jänecke, D. A. Roberts, M. N. Harakeh, G. P. A. Berg, S. Chang, J. Liu, E. J. Stephenson, B. F. Davis, H. Akimune, and M. Fujiwara, Phys. Rev. C 51, 526 (1995).
  30. A. N. Fazliakhmetov, L. V. Inzhechik, G. A. Koroteev, Yu. S. Lutostansky, V. N. Tikhonov, and A. K. Vyborov, AIP Conf. Proc. 2165, 020015 (2019).
  31. А. Б. Мигдал, Теория конечных ферми-систем и свойства атомных ядер (Наука, Москва, 1983) [A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Interscience, New York, 1967)].
  32. Ю. С. Лютостанский, А. П. Осипенко, В. Н. Тихонов, Изв. РАН. Сер. физ. 83, 539 (2019) [Bull. Russ. Acad. Sci.: Phys. 83, 488 (2019)].
  33. Ю. С. Лютостанский, Н. А. Белогорцева, Г. А. Коротеев, А. Ю. Лютостанский, А. П. Осипенко, В. Н. Тихонов, А. Н. Фазлиахметов, ЯФ 85, 409 (2022) [Phys. At. Nucl. 85, 551 (2022)].
  34. Yu. S. Lutostansky, A. N. Fazliakhmetov, G. A. Koroteev, N. V. Klochkova, A. Yu. Lutostansky, A. P. Osipenko, and V. N. Tikhonov, Phys. Lett. B 826, 136905 (2022).
  35. I. N. Borzov, S. A. Fayans, and E. L. Trykov, Nucl. Phys. A 584, 335 (1995).
  36. Ю. С. Лютостанский, ЯФ 83, 34 (2020) [Phys. At. Nucl. 83, 33 (2020)].
  37. A. Arima, Nucl. Phys. A 649, 260 (1999).
  38. Ц. С. Ву, С. А. Мошковский, Бета-распад (Атомиздат, Москва, 1970) [C. S. Wu and S. A. Moszkowski, Beta Decay (Interscience, New York, 1966)].
  39. M. Behrens and J. Janecke, Elementary Particles, Nuclei and Atom, Landolt-Bornstein Group I: Nuclear Physics and Technology (Springer, 1969), Vol. 4.
  40. А. Н. Фазлиахметов, Ю. С. Лютостанский, Г. А. Коротеев, А. П. Осипенко, В. Н. Тихонов, ЭЧАЯ 54, 668 (2023) [Phys. Part. Nucl. 54, 547 (2023)].
  41. R. L. Workman, V. D. Burkert, V. Crede, et al., Prog. Theor. Exp. Phys. 2022, 083C01 (2022).
  42. J. N. Bahcall, A. M. Serenelli, and S. Basu, Astrophys. J. Lett. 621, L85 (2005).
  43. H. Ejiri and S. R. Elliott, Phys. Rev. C 89, 055501 (2014).
  44. H. Ejiri and S. R. Elliott, Phys. Rev. C 95, 055501 (2017).
  45. D. K. Nadezhin and I. V. Otroshchenko, Sov. Astron. 24, 47 (1980).
  46. A. A. Dzhioev, A. V. Yudin, N. V. Dunina-Barkovskaya, and A. I. Vdovin, MNRAS 527, 7701 (2024).
  47. Ю. С. Лютостанский, А. Н. Фазлиахметов, Г. А. Коротеев, В. Н. Тихонов, Письма в ЖЭТФ (2025) (в печати).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences