INFLUENCE OF CARRIER TEXTURAL CHARACTERISTICS ON THE ACTIVITY OF CHROMOXIDE CATALYSTS IN THE PROPANE DEHYDROGENATION REACTION IN THE PRESENCE OF CO2

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Two series of catalysts of CrOx-SBA-15 composition obtained by different methods – co-precipitation with a carrier and impregnation by moisture impregnation, varying the chromium content in the catalyst from 3 to 7 wt % – were synthesized and investigated in this work. The obtained materials were investigated by nitrogen adsorption, UV–VIS SDS and IR SDS methods using CD3CN as a test molecule. On 3 wt % Cr-SiO2catalyst prepared by co-precipitation, a propylene selectivity of 78% was achieved with a propane conversion of 14% at 600°C.

作者简介

M. Tedeeva

Lomonosov Moscow State University, Department of Chemistry

Email: maritedeeva@mail.ru
Moscow, Russia

M. Mashkin

Lomonosov Moscow State University, Department of Chemistry

Moscow, Russia

A. Andresyuk

Lomonosov Moscow State University, Department of Chemistry

Moscow, Russia

P. Pribytkov

Lomonosov Moscow State University, Department of Chemistry

Moscow, Russia

A. Medvedev

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Moscow, Russia

O. Tkachenko

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Moscow, Russia

G. Kapustin

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Moscow, Russia

S. Dunaev

Lomonosov Moscow State University, Department of Chemistry

Moscow, Russia

A. Kustov

Lomonosov Moscow State University, Department of Chemistry

Moscow, Russia

参考

  1. Ansari M.B., Park S.-E. // Energy Environ. Sci. 2012. V. 5. P. 9419.
  2. Wang S., Zhu Z.H. // Energy & Fuels. 2004. V. 18. № 4. P. 1126.
  3. Baroudi H.A., Awoyomi A., Patchigolla K., et al. // Applied Energy. 2021. V. 287. P. 116510.
  4. Medvedev A.A., Kustov A.L., Beldova D.A., et al. // Int. J. Mol. Sci. 2023. V. 24. № 2. P. 1279.
  5. Medvedev A.A., Beldova D.A., Kustov L.M., et al. // Clean Technol. 2024. V. 6. № 4. Р. 1579.
  6. Evdokimenko N., Vikanova K., Bazlov A., et al. // Applied Catalysis A: General. 2024. V. 688. P. 119998.
  7. Bogdan T.V., Koklin A.E., Mishanin I.I., et al. // ChemPlusChem. 2024. P. e202400327.
  8. Tsyganok A.I., Tsunoda T., Hamakawa S., et al. // Journal of Catalysis. 2003. Т. 213. № 2. P. 191.
  9. Ivashchenko A.N., Tedeeva M.A., Kartavova K.E., et al. // Russ. J. Phys. Chem. A. 2021. V. 95. № 12. P. 2417.
  10. Mishanin I.I., Bogdan T.V., Koklin A.E., Bogdan V.I. // Chem. Eng. J. Elsevier B. 2022. V. 446. № P3. P. 137184.
  11. Cheng Y., Zhou L., Xu J. et al. // Microporous and Mesoporous Materials. 2016. V. 234. P. 370.
  12. Tedeeva M.A., Kustov A.L., Pribytkov P.V., et al. // Fuel. 2022. V. 313. P. 122698.
  13. Mashkin M.Y., Tedeeva M.A., Fedorova A.A., et al. // J. Chem. Technol. Biotechnol. John Wiley & Sons, Ltd. 2023. V. 98. № 5. P. 1247.
  14. Chernyak S.A., Kustov A.L., Stolbov D.N., et al. // Applied Surface Science. 2022. V. 578. P. 152099.
  15. Salaeva A.A., Salaev M.A., Mamontov G.V. // Chem. Eng. Sci. 2020. V. 215. P. 115462.
  16. Atanga M.A., Rezaei F., Jawad A., et al. // Applied Catalysis B: Environmental. 2018. V. 220. P. 429.
  17. Prasad P.S.S., Bae J.W., Jun K.-W., Lee K.-W. // Catal. Surv. Asia. 2008. V. 12. P. 170.
  18. Kim C., Yoo C.-J., Oh H.-S. et al. // Journal of CO2 Utilization. 2022. V. 65. P. 102239.
  19. Bathena T., Phung T., Murugesan V. // Journal of CO2 Utilization. 2024. V. 84. P. 102848.
  20. Igonina M., Tedeeva M., Kalmykov K. et al. // Catalysts. 2023. V. 13. № 906. P. 1.
  21. Michorczyk P., Ogonowski J., Zenczak K. // J. Mol. Cat. A: Chem. 2011. V. 349. P. 1.
  22. Cheng Y., Zhou L., Xu J. et al. // Microporous and Mesoporous Materials. 2016. V. 234. P. 370.
  23. Gaspar A., Brito J., Dieguez L. // J. Mol. Catal. A: Chem. 2003. V. 203. P. 251.
  24. Weckhuysen B., Verberckmoes A., De Baets A., Schoonheydt R. // Journal of Catalysis. 1997. V. 166. № 2. P. 160.
  25. Michorczyk P., Ogonowski J., Kuśtrowski P., Chmielarz L. // Applied Catalysis A: General. 2008. V. 349. № 1–2. P. 62.
  26. Ramesh Y., Thirumala Bai P., Hari Babu B. et al. // Appl. Petrochem. Res. 2014. V. 4. P. 247.
  27. Тедеева М.А., Кустов А.Л., Прибытков П.В. и др. // Журн. Физ. химии. 2018. Т. 92. № 12. С. 1879.
  28. Kazansky V.B., Serikh A.I. // PCCP. 2004. № 6. С. 3760.
  29. Mehdad A., Gould N.S., Xu B., Lobo R.L. // Catalysis Science & Technology. 2018. № 8. P. 358.
  30. Purcell K.F., Grado R.S. // J. Am. Chem. Soc. 1966. № 88. Р. 919.
  31. Lin L., Zhang X., He N., et al. // Catalysts. 2019. № 9. Р. 100.
  32. Medin A.S., Borovkov V. Yu., Kazansky V.B. et al. // Zeolites. 1990. № 10. Р. 668.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025