Оптимизация гидротермального синтеза титаносиликатов фармакосидеритового типа для извлечения 137cs и 90sr из жидких сред с высоким солесодержанием
- Авторы: Мармаза П.А.1,2, Иванов Н.П.1, Каптаков В.О.3, Зернов Я.Г.1, Майоров В.Ю.1,4, Федорец А.Н.1, Шичалин О.О.1,2, Папынов Е.К.1
- 
							Учреждения: 
							- Дальневосточный федеральный университет
- Сахалинский государственный университет
- Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
- Дальневосточный геологический институт ДВО РАН
 
- Выпуск: Том 70, № 3 (2025)
- Страницы: 346-356
- Раздел: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://journals.eco-vector.com/0044-457X/article/view/684983
- DOI: https://doi.org/10.31857/S0044457X25030062
- EDN: https://elibrary.ru/BBFIVT
- ID: 684983
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Изучено влияние длительности гидротермального синтеза на сорбционные свойства титаносиликатов фармакосидеритового типа (ТСФТ) по отношению к цезию-137 и стронцию-90, структурно-фазовый состав, морфологию поверхности и текстурные характеристики. Состав, морфология и структура синтезированных титаносиликатов исследованы методами РФА, РЭМ и ЭДС. Текстурные характеристики материалов изучены с помощью методов БЭТ и DFT. Для дизамещенных ТСФТ исследованы сорбционные свойства по отношению к радионуклидам цезия и стронция в микроконцентрациях в условиях адсорбции из модельных растворов жидких радиоактивных отходов низкой и средней концентрации мешающих примесей.
Полный текст
 
												
	                        Об авторах
П. А. Мармаза
Дальневосточный федеральный университет; Сахалинский государственный университет
							Автор, ответственный за переписку.
							Email: marmaza.pa@dvfu.ru
				                					                																			                												                	Россия, 							Владивосток; Южно-Сахалинск						
Н. П. Иванов
Дальневосточный федеральный университет
														Email: marmaza.pa@dvfu.ru
				                					                																			                												                	Россия, 							Владивосток						
В. О. Каптаков
Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
														Email: marmaza.pa@dvfu.ru
				                					                																			                												                	Россия, 							Москва						
Я. Г. Зернов
Дальневосточный федеральный университет
														Email: marmaza.pa@dvfu.ru
				                					                																			                												                	Россия, 							Владивосток						
В. Ю. Майоров
Дальневосточный федеральный университет; Дальневосточный геологический институт ДВО РАН
														Email: marmaza.pa@dvfu.ru
				                					                																			                												                	Россия, 							Владивосток; Владивосток						
А. Н. Федорец
Дальневосточный федеральный университет
														Email: marmaza.pa@dvfu.ru
				                					                																			                												                	Россия, 							Владивосток						
О. О. Шичалин
Дальневосточный федеральный университет; Сахалинский государственный университет
														Email: marmaza.pa@dvfu.ru
				                					                																			                												                	Россия, 							Владивосток; Южно-Сахалинск						
Е. К. Папынов
Дальневосточный федеральный университет
														Email: marmaza.pa@dvfu.ru
				                					                																			                												                	Россия, 							Владивосток						
Список литературы
- Chen S., Yang X., Wang Z. et al. // J. Hazard. Mater. 2021. V. 410. P. 124608. https://doi.org/10.1016/j.jhazmat.2020.124608
- Nekrasova N.A., Milyutin V.V., Kaptakov V.O. et al. // Inorganics. 2023. V. 11. № 3. P. 126. https://doi.org/10.3390/inorganics11030126
- Shichalin O.O., Papynov E.K., Ivanov N.P. et al. // Sep. Purif. Technol. 2024. V. 332. 2023. P. 125662. https://doi.org/10.1016/j.seppur.2023.125662
- Vellingiri K., Kim K.H., Pournara A. et al. // Prog. Mater. Sci. 2018. V. 94. P. 1. https://doi.org/10.1016/j.pmatsci.2018.01.002
- Mohiuddin I., Grover A., Aulakh J.S. et al. // J. Hazard. Mater. 2021. V. 401. Р. 123782. https://doi.org/10.1016/j.jhazmat.2020.123782
- Shichalin O.O., Papynov E.K., Belov A.A. et al. // Solid State Sci. 2024. V. 154. № July. P. 107619. https://doi.org/10.1016/j.solidstatesciences.2024.107619
- Shichalin O.O., Vereshchagina T.A., Buravlev I.Y. et al. // J. Environ. Chem. Eng. 2024. V. 12. № 5. P. 113893. https://doi.org/10.1016/j.jece.2024.113893
- Shichalin O.O., Yarusova S.B., Ivanov N.P. et al. // J. Water Process Eng. 2024. V. 59. Р. 105042. https://doi.org/10.1016/j.jwpe.2024.105042
- Perovskiy I., Yanicheva N.Y., Stalyugin V.V. et al. // Microporous Mesoporous Mater. 2021. V. 311. P. 110716. https://doi.org/10.1016/j.micromeso.2020.110716
- Abass M.R., Abou-Lilah R.A., Kasem A.E. // Russ. J. Inorg. Chem. 2024. V. 69. P. 98. https://doi.org/10.1134/S0036023623602507
- Luo J., Li X., Zhang F., et al. // Int. J. Miner. Metall. Mater. 2021. V. 28. № 6. P. 1057. https://doi.org/10.1007/s12613-020-2056-6
- Nikolaev A.I., Gerasimova L.G., Maslova M.V. et al. // Theor. Found. Chem. Eng. 2021. V. 55. № 5. P. 1078. https://doi.org/10.1134/S0040579521050110
- Kozlova T.O., Khvorostinin E.Y., Rodionova A.A. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 11. P. 1503. https://doi.org/10.1134/S0036023623601964
- Bezhin N.A., Dovhyi I.I., Lyapunov A.Y. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 9. P. 1178. https://doi.org/10.1134/S0036023619090031
- Maslova M.V., Gerasimova L.G., Knyazeva A.I. // Russ. J. Inorg. Chem. 2015. V. 60. № 4. P. 442. https://doi.org/10.1134/S0036023615040154
- Shapkin N.P., Ermak I.M., Razov V.I. et al. // Russ. J. Inorg. Chem. 2014. V. 59. № 6. P. 587. https://doi.org/10.1134/S0036023614060187
- Gordienko P.S., Yarusova S.B., Shabalin I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 9. P. 1393. https://doi.org/10.1134/S0036023622090042
- Lee N.K., Khalid H.R., Lee H.K. // Microporous Mesoporous Mater. 2017. V. 242. P. 238. https://doi.org/10.1016/j.micromeso.2017.01.030
- Șenilă M., Neag E., Tănăselia C. et al. // Materials (Basel). 2023. V. 16. № 8. P. 2965. https://doi.org/10.3390/ma16082965
- Ivanov N.P., Drankov A.N., Papynov E.K. et al. // Prot. Met. Phys. Chem. Surfaces. 2023. V. 59. № 5. P. 868. https://doi.org/10.1134/S2070205123701058
- Nong C., Li X., Xu J. // J. Radioanal. Nucl. Chem. 2023. V. 332. № 4. P. 1263. https://doi.org/10.1007/s10967-022-08721-3
- Zhou Y., Li Y., Su Y. et al. // J. Radioanal. Nucl. Chem. 2023. V. 332. № 8. P. 3191. https://doi.org/10.1007/s10967-023-08948-8
- Trung N.D., Ping N., Dan H.K. // Environ. Eng. Res. 2023. V. 28. № 6. P. 220389. https://doi.org/10.4491/eer.2022.389
- Nagasaka C.A., Ogiwara N., Kobayashi S. et al. // Small. 2024. V. 20. № 17. P. 2307004. https://doi.org/10.1002/smll.202307004
- Asgari P., Mousavi S.H., Aghayan H. et al. // Microchem. J. 2019. V. 150. P. 104188. https://doi.org/10.1016/j.microc.2019.104188
- Ivanov N.P., Dran’kov A.N., Shichalin O.O. et al. // J. of Radioanal. and Nucl. Chem. 2024. V 333. P. 1213. https://doi.org/10.1007/s10967-024-09362-4
- Balybina V.A., Dran’kov A.N., Shichalin O.O. et al. // J. Compos. Sci. 2023. V. 7. № 11. P. 458. https://doi.org/10.3390/jcs7110458
- Ivanov N.P., Marmaza P.A., Shichalin O.O. et al. // Radiochem. 2023. V. 65. Suppl. 1. P. S29. https://doi.org/10.1134/S1066362223070032
- Perovskiy I., Yanicheva N.Y., Stalyugin V.V. et al. // Microporous Mesoporous Mater. 2021. V. 311. Р. 110716. https://doi.org/10.1016/j.micromeso.2020.110716
- Popa K., Pavel C.C. // Desalination. 2012. V. 293. P. 78. https://doi.org/10.1016/j.desal.2012.02.027
- Gainey S.R., Lauar M.T., Adcock C.T. et al. // Microporous Mesoporous Mater. 2020. V. 296. P. 109995. https://doi.org/10.1016/j.micromeso.2019.109995
- Campbell E.L., Westesen A.M., Peterson R.A. // Radiochim. Acta. 2023. V. 111. № 10. P. 735. https://doi.org/10.1515/ract-2023-0134
- Perovskiy I.A., Shushkov D.A., Ponaryadov A.V. et al. // J. Environ. Chem. Eng. 2023. V. 11. № 5. P. 110691. https://doi.org/10.1016/j.jece.2023.110691
- Park Y., Shin W.S., Reddy G.S. et al. // J. Nanoelectron. Optoelectron. 2010. V. 5. № 2. P. 238. https://doi.org/10.1166/jno.2010.1101
- Westesen A.M., Campbell E.L., Fiskum S.K. et al. // Sep. Sci. Technol. 2022. V. 57. № 15. P. 2482. https://doi.org/10.1080/01496395.2022.2059378
- Panikorovskii T.L., Kalashnikova G.O., Nikolaev A.I. et al. // Minerals. 2022. V. 12. № 2. P. 248. https://doi.org/10.3390/min12020248
- Dyer A., Newton J., O’Brien L. et al. // Microporous Mesoporous Mater. 2009. V. 117. № 1. P. 304. https://doi.org/10.1016/j.micromeso.2008.07.003
- Dyer A., Newton J., O’Brien L. et al. // Microporous Mesoporous Mater. 2009. V. 120. № 3. P. 272. https://doi.org/10.1016/j.micromeso.2008.11.016
- Yakovenchuk V.N., Nikolaev A.P., Selivanova E.A. et al. // Am. Mineral. 2009. V. 94. № 10. P. 1450. https://doi.org/10.2138/am.2009.3065
- Milyutin V.V., Nekrasova N.A., Yanicheva N.Y. et al. // Radiochemistry. 2017. V. 59. № 1. P. 65. https://doi.org/10.1134/S1066362217010088
- Nikolaev A.I., Gerasimova L.G., Maslova M.V. et al. // IOP Conf. Ser. Mater. Sci. Eng. 2019. V. 704. № 1. P. 012003. https://doi.org/10.1088/1757-899X/704/1/012003
- Yakovenchuk V.N., Selivanova E.A., Krivovichev S.V. et al. // Miner. as Adv. Mater. II. Berlin, Heidelberg: Springer Berlin-Heidelberg, 2011. P. 205. https://doi.org/10.1007/978-3-642-20018-2_20
- Santos-Vieira I.C.M.S., Lin Z., Rocha J. // Green Chem. 2022. V. 24. № 13. P. 5088. https://doi.org/10.1039/D2GC00654E
- Chapman D.M., Roe A.L. // Zeolites. 1990. V. 10. № 8. P. 730. https://doi.org/10.1016/0144-2449(90)90054-U
- Lihareva N., Kostov-Kytin V. // Bulg. Chem. Commun. 2014. V. 46. № 3. P. 569.
- Kim Y.K., Kim S., Kim Y. et al. // Appl. Surf. Sci. 2019. V. 493. P. 165. https://doi.org/10.1016/j.apsusc.2019.07.008
- Eom H.H., Kim H., Harbottle D. et al. // Sep. Purif. Technol. 2024. V. 330. P. 125550. https://doi.org/10.1016/j.seppur.2023.125550
- Milyutin V.V., Nekrasova N.A., Kaptakov V.O. et al. // Adsorption. 2023. V. 29. № 5–6. P. 323. https://doi.org/10.1007/s10450-023-00407-w
- Nekrasova N.A., Milyutin V. V., Kaptakov V.O. et al. // Inorganics. 2023. V. 11. № 3. P. 126. https://doi.org/10.3390/inorganics11030126
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 




