Formation of compounds with alunite-like structure in the Bi2O3–Al2O3–Fe2O3–P2O5–H2O system under hydrothermal conditions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Under hydrothermal conditions in the Bi2O3-Al2O3–Fe2O3–P2O5–H2O system, variable-composition compounds Bi(Al1–xFex)3(PO4)2(OH)6 with an alunite-like structure were obtained. Based on experimental data on the miscibility limits of components in the (1–x)BiAl3(PO4)2(OH)6xBiFe3(PO4)2(OH)6 system, the parameters of the subregular solution model (Q1 = 6.395, Q2 = 8.987 kJ/mol) were determined, and spinodal and binodal decomposition curves of solid solutions with an alunite-like structure were calculated. Thermodynamic calculations showed that individual BiAl3(PO4)2(OH)6 and BiFe3(PO4)2(OH)6 can form at temperatures above 122 and 170°C, respectively, which is consistent with the experimental data obtained in this study, indicating the absence of compounds with alunite-like structure at 160°C in the range 0.8 < x ≤ 1.

Full Text

Restricted Access

About the authors

D. P. Elovikov

Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”; St. Petersburg Electrotechnical University “LETI”

Author for correspondence.
Email: syncdima@mail.ru

Institute of Silicate Chemistry

Russian Federation, St. Petersburg, 199034; St. Petersburg, 197022

O. V. Proskurina

Ioffe Institute; St. Petersburg State Technological Institute

Email: syncdima@mail.ru
Russian Federation, St. Petersburg, 194021; St. Petersburg, 190013

V. V. Gusarov

Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”; Ioffe Institute

Email: syncdima@mail.ru

Institute of Silicate Chemistry

Russian Federation, St. Petersburg, 199034; St. Petersburg, 194021

References

  1. Sunyer A., Currubí M., Viñals J. // J. Hazar. Mater. 2013. V. 261. P. 559. https://doi.org/10.1016/j.jhazmat.2013.08.011
  2. Kolitsch U. // Can. Mineral. 2015. V. 53. № 5. P. 833. https://doi.org/10.3749/canmin.1400103
  3. Jones F. // Minerals. 2017. V. 7. № 6. P. 90. https://doi.org/10.3390/min7060090
  4. Wang L., Xue N., Zhang Y., Hu P. // Minerals. 2021. V. 11. № 8. P. 892. https://doi.org/10.3390/min11080892
  5. Cruells M., Roca A. // Metals. 2022. V. 12. № 5. P. 802. https://doi.org/10.3390/met12050802
  6. Luo Z., Mu W., Zhou X., Chen Z. // Environ.Technol. 2022. V. 43. № 19. P. 2881. https://doi.org/10.1080/09593330.2021.1908428
  7. Kolitsch U., Ping A. // J. Mineral. Petrol. Sci. 2001. V. 96. P. 67. https://doi.org/10.2465/jmps.96.67
  8. Monteagudo J.M., Durán A., Martín I.S. et al. // J. Chem. Technol. Biotechnol. 2005. V. 81. P. 262. https://doi.org/10.1002/jctb.1368
  9. Aguilar-Carrillo J., Villalobos M., Pi-Puig T. et al. // Environ. Sci.: Processes. Impacts. 2018. V. 20. № 2. P. 354. https://doi.org/10.1039/C7EM00426E
  10. Owen D.N., Cook N.J., Rollog M. et al. // J. Am. Mineral. 2019. V. 104. P. 1806. https://doi.org/10.2138/am-2019-7116
  11. Hudson-Edwards K.A. // Am. Mineral. 2019. V. 104. № 5. P. 633. https://doi.org/10.2138/am-2019-6591
  12. Luo W., Kelly S.D., Kemner K.M. et al. // Environ. Sci. Technol. 2009. V. 43. № 19. P. 7516. https://doi.org/10.1021/es900731a
  13. Lee S., ul Hassan M., Ryu H.J. // Sustainable Mater. Technol. 2021. V. 30. P. e00356. https://doi.org/10.1016/j.susmat.2021.e00356
  14. Rakhimova N. // Sustainability. 2022. V. 15. № 1. P. 689. https://doi.org/10.3390/su15010689
  15. Zhou Y., Wang T., Fan F. et al. // Adv. Explor. Indicat. Mineral. 2022. V. 12. № 8. P. 958. https://doi.org/10.3390/min12080958
  16. Morales-Leal J.E., Campos E., Kouzmanov K. et al. // Miner. Deposita. 2023. V. 58. P. 593. https://doi.org/10.1007/s00126-022-01149-5
  17. Bouvart T., Poot J., Dekoninck A. et al. // Geochemistry. 2024. V. 84. № 4. P. 126204. https://doi.org/10.1016/j.chemer.2024.126204
  18. Brophy G.P., Scott E.S., Snellgrove R.A. // Am. Mineral.: J. Earth Planetary Mater. 1962. V. 47. № 1–2. P. 112.
  19. Stoffregen R.E., Alpers C.N., Jambor J.L. // Rev. Мineral. Geochem. 2000. V. 40. № 1. P. 453. https://doi.org/10.2138/rmg.2000.40.9
  20. Kim Y., Wolf A.S., Becker U. // Geochim. Cosmochim. Acta. 2019. V. 248. P. 138. https://doi.org/10.1016/j.gca.2018.11.017
  21. Grigg A.R.C., Notini L., Kaegi R. et al. // ACS Earth Space Chemistry. 2024. V. 8. № 2. P. 194. https://doi.org/10.1021/acsearthspacechem.3c00174
  22. Gilkes R.J., Palmer B. // J. Mineral. Mag. 1983. V. 47. P. 221. https://doi.org/10.1180/minmag.1983.047.343.13
  23. Hikichi Y., Ohsato H., Miyamoto M. // J. Mineral. Soc. Jpn. 1989. V. 19. P. 67. https://doi.org/10.2465/gkk1952.19.67
  24. Schwab R.G., Pimpl T., Schukow H. et al. // Neues Jahrbuch für Mineralogie. 2004. V. 9. P. 385. https://doi.org/10.1127/0028-3649/2004/2004-0385
  25. Enikeeva M.O., Zhidomorova K.A., Danilovich D.P. et al. // Nanosyst.: Phys. Chem. Math. 2024. V. 15. № 6. P. 781. https://doi.org/10.17586/2220-8054-2024-15-6-781-792
  26. Филиппова А.Д., Румянцев А.А., Баранчиков А.Е. и др. // Журн. неорган. химии. 2022. Т. 67. № 6. С. 706. https://doi.org/10.31857/S0044457X22060083
  27. Svinolupova A.S., Lomakin M.S., Kirillova S.A. et al. // Nanosyst.: Phys. Chem. Math. 2020. V. 11. № 3. P. 338. https://doi.org/10.17586/2220-8054-2020-11-3-338-344
  28. Бачина А.К., Альмяшева О.В. Попков В.И. // Журн. неорган. химии. 2022. Т. 67. № 6. С. 761. https://doi.org/10.31857/S0044457X22060022
  29. Enikeeva M.O., Proskurina O.V., Danilovich D.P. et al. // Nanosyst.: Phys. Chem. Math. 2020. V. 11. P. 705. https://doi.org/10.17586/2220-8054-2020-11-6-705-715
  30. Ломакин М.С., Проскурина О.В., Левин А.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 6. С. 750. https://doi.org/10.31857/S0044457X22060149
  31. Еникеева М.О., Кенес К.М., Проскурина О.В. и др. // Журн. прикл. химии. 2020. Т. 93. № 4. С. 529. https://doi.org/10.31857/S0044461820040076
  32. Zlobin V., Nevedomskiy V., Tomkovich M. et al. // NanoStructures & Nano-Objects. 2024. V. 37. P. 101076. https://doi.org/10.1016/j.nanoso.2023.101076
  33. Егорышева А.В., Голодухина С.В., Либерман Е.Ю. и др. // Журн. неорган. химии. 2024. Т. 69. № 7. С. 947. https://doi.org/10.31857/S0044457X24070018
  34. Nikolaev A.I., Gerasimova L.G., Maslova M.V. et al. // Synthesis and application, IOP Conf. Ser.: Mater. Sci. Eng. 2019. V. 704. https://doi.org/10.1088/1757-899X/704/1/ 012003
  35. Gavryushkin P.N., Thomas V.G., Bolotina N.B. et al. // J. Cryst. Growth. 2016. V. 16. № 4. P. 1893. https://doi.org/10.1021/acs.cgd.5b01398
  36. Thomas V.G., Demin S.P., Foursenko D.A. et al. // J. Cryst. Growth. 1999. V. 206. № 3. P. 203. https://doi.org/10.1016/S0022-0248(99)00312-7
  37. Еловиков Д.П., Томкович М.В., Левин А.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 6. С. 782. https://doi.org/10.31857/S0044457X2206006X
  38. Elovikov D.P., Proskurina O.V., Tomkovich M.V. et al. // Nanosyst.: Phys. Chem. Math. 2022. V. 13. № 6. P. 662. https://doi.org/10.17586/2220-8054-2022-13-6-662-667
  39. Van Wambeke L. // Bull. Minéral. 1975. V. 98. № 6. P. 351. https://doi.org/10.3406/bulmi.1975.7016
  40. Morimitsu Y., Shirose Y., Enju S. et al. // J. Mineral. Petrol. Sci. 2021. V. 116. № 2. P. 104. https://doi.org/10.2465/jmps.201130d
  41. Elovikov D.P., Nikiforova K.O., Tomkovich M.V. et al. // Inorg. Chim. Acta. 2024. V. 561. P. 121856. https://doi.org/10.1016/j.ica.2023.121856
  42. Liu Y., Li Z., You Y. // RSC Adv. 2017. V. 7. P. 51281. https://doi.org/10.1039/C7RA09186A
  43. Guo L., Li L., Guo Y. et al. // IOP Conf. Series: Mater. Sci. Eng., IOP Publishing. 2018. V. 382. № 5. P. 382. https://doi.org/10.1088/1757-899X/382/5/052018
  44. Eremin O.V., Yurgenson G.A., Solodukhina M.A. et al. // Mineralogy of Technogenesis. 2018. V. 19. P. 103.
  45. Gaboreau S., Vieillard P. // Geochim. Cosmochim. Acta. 2004. V. 68. P. 3307. https://doi.org/10.1016/j.gca.2003.10.040.
  46. Baloch A.A., Alqahtani S.M., Mumtaz F. et al. // Phys. Rev. Mater. 2021. V. 5. № 4. P. 043804. https://doi.org/10.1103/PhysRevMaterials.5.043804
  47. Торопов Н.А., Барзаковский В.П., Лапин В.В. и др. Диаграммы состояния силикатных систем: Справочник. АН СССР. Ин-т химии силикатов им. И.В. Гребенщикова. Двойные системы / 22 см. 2-е изд., доп. Ленинград: Наука, 1969.
  48. Elovikov D.P., Osminina A.A. // Nanosyst.: Phys. Chem. Math. 2024. V. 15. № 3. P. 361. https://doi.org/10.17586/2220-8054-2024-15-3-361-368
  49. Phu N.D., Ngo D.T., Hoang L.H. et al. // J. Phys. D: Appl. Phys. 2011. V. 44. № 34. P. 345002. https://doi.org/10.1088/0022-3727/44/34/345002
  50. Machala L., Zboril R., Gedanken A. // J. Phys. Chem. B. 2007. V. 111. № 16. P. 4003. https://doi.org/10.1021/jp064992s
  51. Drüppel K., Hösch A., Franz G. // Am. Mineral. 2007. V. 92. № 10. P. 1695. https://doi.org/10.2138/am.2007.2487
  52. Barros I.R., Benincá C., Zanoelo E.F. // Environ. Technol. 2024. V. 45. № 21. P. 4266. https://doi.org/10.1080/09593330.2023.2246643

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. X-ray diffraction patterns of samples 1–10 (Table 1) after isothermal holding under hydrothermal conditions at 160°C and a pressure of ~6 MPa for 10 days.

Download (29KB)
3. Fig. 2. X-ray diffraction patterns of samples obtained with different durations of isothermal holding of a water-salt suspension with a given stoichiometry of elements to form compounds of variable composition in the (1 – x)BiAl3(PO4)2(OH)6–xBiFe3(PO4)2(OH)6 system, where x0 = 0.5: a — 8, b — 14, c — 23, d — 30, d — 90 days. Line designations in the figure by color: red — calculation, black — experiment, purple — difference between calculation and experiment, blue and green — structure of the composition with a higher and lower iron content, respectively.

Download (71KB)
4. Fig. 3. Dependence of the unit cell volume (V) of Bi(Al1–xFex)3(PO4)2(OH)6 solid solutions with alunite-like structure on the iron content in the (1 – x)BiAl3(PO4)2(OH)6–xBiFe3(PO4)2(OH)6 system. Black symbols are the iron content in the structure, according to X-ray diffraction analysis, for samples 1–7, red symbols are the iron content in the structure at different durations of isothermal holding for sample 5. Symbols with an unpainted middle correspond to the compositions of the (1–x)BiAl3(PO4)2(OH)6 system with non-single-phase samples.

Download (21KB)
5. Fig. 4. Dependences of the Gibbs energy of formation of compounds with an alunite-like structure in the (1 – x)BiAl3(PO4)2(OH)6–xBiFe3(PO4)2(OH)6 system (a, solid line) and the Gibbs energy of mixing (b) on the temperature and iron content in the system; curves of spinodal and binodal decomposition of the phase with an alunite-like structure (c) in this system. Designations in figures (a) and (b): 1 — 122, 2 — 150, 3 — 160, 4 — 170°C. Points in figure c: diamonds — compositions 8 and 9 (Table 1).

Download (43KB)

Copyright (c) 2025 Russian Academy of Sciences