Low-temperature oleylamine-mediated hydrothermal synthesis of copper nanowires involving ascorbic acid
- Authors: Simonenko N.P.1, Simonenko T.L.1, Topalova Y.R.2, Gorobtsov P.Y.1, Arsenov P.V.3, Simonenko E.P.1
-
Affiliations:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Moscow Institute of Physics and Technology (National Research University)
- Issue: Vol 70, No 7 (2025)
- Pages: 887-896
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://journals.eco-vector.com/0044-457X/article/view/689482
- DOI: https://doi.org/10.31857/S0044457X25070058
- EDN: https://elibrary.ru/JODUIQ
- ID: 689482
Cite item
Abstract
The low temperature hydrothermal synthesis of copper nanowires in the presence of oleylamine and ascorbic acid has been investigated. It was found that ascorbic acid can be effectively used as a “soft” reducing agent in the preparation of one-dimensional copper nanostructures, and by varying the synthesis conditions their microstructural properties can be modified, as indicated by the change in position of the characteristic absorption band using spectrophotometry in the visible region. The formation of nanowires with the desired crystal structure and the average size of the coherent scattering region, ranging from 25.7 to 28.8 nm, was confirmed by X-ray diffraction analysis. The microstructural features of the obtained materials were studied by scanning and transmission electron microscopy along with atomic force microscopy. In particular, it was found that reducing the synthesis temperature from 110 to 90°C and increasing the content of oleic acid in the reaction system allows to obtain copper nanowires with an average diameter of about 70.2 nm and an aspect ratio of about 285.
Full Text

About the authors
N. P. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Author for correspondence.
Email: n_simonenko@mail.ru
Russian Federation, Moscow, 119991
T. L. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: n_simonenko@mail.ru
Russian Federation, Moscow, 119991
Ya. R. Topalova
Kurnakov Institute of General and InorganicChemistry of the Russian Academy of Sciences
Email: n_simonenko@mail.ru
Russian Federation, Moscow, 119991
Ph. Yu. Gorobtsov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: n_simonenko@mail.ru
Russian Federation, Moscow, 119991
P. V. Arsenov
Moscow Institute of Physics and Technology (National Research University)
Email: n_simonenko@mail.ru
Russian Federation, Dolgoprudny, Moscow Region, 141701
E. P. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: n_simonenko@mail.ru
Russian Federation, Moscow, 119991
References
- Song J., Zeng H. // Angew. Chem. Int. Ed. 2015. V. 54. № 34. P. 9760. https://doi.org/10.1002/anie.201501233
- Hofmann A.I., Cloutet E., Hadziioannou G. // Adv. Electron. Mater. 2018. V. 4. № 10. https://doi.org/10.1002/aelm.201700412
- Huang Q., Zhu Y. // ACS Appl. Mater. Interfaces. 2021. V. 13. № 51. P. 60736. https://doi.org/10.1021/acsami.1c14816
- Singh M., Rana S. // Mater. Today Commun. 2020. V. 24. P. 101317. https://doi.org/10.1016/j.mtcomm.2020.101317
- Naka S. / Transparent Electrodes for Organic Light‐emitting Diodes, in: Transparent Conduct. Mater., Wiley. 2018. p. 301–315. https://doi.org/10.1002/9783527804603.ch5_2
- Yan T., Yang W., Wu L. et al. // J. Mater. Sci. Technol. 2025. V. 209. P. 95. https://doi.org/10.1016/j.jmst.2024.05.016
- Guo C.F., Ren Z. // Mater. Today 2015. V. 18. № 3. P. 143. https://doi.org/10.1016/j.mattod.2014.08.018
- Ding Y., Xiong S., Sun L. et al. // Chem. Soc. Rev. 2024. V. 53. № 15. P. 7784. https://doi.org/10.1039/D4CS00080C
- Simonenko N.P., Simonenko T.L., Gorobtsov P.Y. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 1301. https://doi.org/10.1134/S0036023624601697
- Simonenko N.P., Simonenko T.L., Gorobtsov P.Y. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 1265. https://doi.org/10.1134/S0036023624601685
- Wang R., Ruan H. // J. Alloys Compd. 2016. V. 656. P. 936. https://doi.org/10.1016/j.jallcom.2015.09.279
- Arsenov P.V., Pilyushenko K.S., Mikhailova P.S. et al. // Nano-Structures & Nano-Objects 2025. V. 41. P. 101429. https://doi.org/10.1016/j.nanoso.2024.101429
- Umemoto Y., Yokoyama S., Motomiya K. et al. // Colloids Surf., A: Physicochem. Eng. Asp. 2022. V. 651. P. 129692. https://doi.org/10.1016/j.colsurfa.2022.129692
- Ulrich N., Schäfer M., Römer M. et al. // ACS Appl. Nano Mater. 2023. V. 6. № 6. P. 4190. https://doi.org/10.1021/acsanm.2c05232
- Patella B., Russo R.R., O’Riordan A. et al. // Talanta. 2021. V. 221. P. 121643. https://doi.org/10.1016/j.talanta.2020.121643
- Li Q., Fu S., Wang X. et al. // ACS Appl. Mater. Interfaces. 2022. V. 14. № 51. P. 57471. https://doi.org/10.1021/acsami.2c19531
- Zhao H.-X., Liu Y.-L., Wang G.-G. et al. // Energy Technol. 2021. V. 9. № 1. https://doi.org/10.1002/ente.202000744
- Zhang H., Tian Y., Wang S. et al. // Chem. Eng. J. 2021. V. 426. P. 131438. https://doi.org/10.1016/j.cej.2021.131438
- Khuje S., Sheng A., Yu J. et al. // ACS Appl. Electron. Mater. 2021. V. 3. № 12. P. 5468. https://doi.org/10.1021/acsaelm.1c00905
- Anand Omar R., Ranavare S.B., Verma N. // Chem. Eng. Sci. 2024. V. 299. P. 120489. https://doi.org/10.1016/j.ces.2024.120489
- Li K.-C., Chu H.-C., Lin Y. et al. // ACS Appl. Mater. Interfaces. 2016. V. 8. № 19. P. 12082. https://doi.org/10.1021/acsami.6b04579
- Scardaci V. // Appl. Sci. 2021. V. 11. № 17. P. 8035. https://doi.org/10.3390/app11178035
- Conte A., Rosati A., Fantin M. et al. // Mater. Adv. 2024. V. 5. № 22. P. 8836. https://doi.org/10.1039/D4MA00402G
- Zhao Y., Zhang Y., Li Y. et al. // New J. Chem. 2012. V. 36. № 5. P. 1161. https://doi.org/10.1039/c2nj21026f
- Haase D., Hampel S., Leonhardt A. et al. // Surf. Coatings Technol. 2007. V. 201. № 22–23. P. 9184. https://doi.org/10.1016/j.surfcoat.2007.04.014
- Yang X., Hu X., Wang Q. et al. // ACS Appl. Mater. Interfaces 2017. V. 9. № 31. P. 26468. https://doi.org/10.1021/acsami.7b08606
- Schmädicke C., Poetschke M., Renner L.D. et al. // RSC Adv. 2014. V. 4. № 86. P. 46363. https://doi.org/10.1039/C4RA04853A
- Inguanta R., Piazza S., Sunseri C. // Appl. Surf. Sci. 2009. V. 255. № 21. P. 8816. https://doi.org/10.1016/j.apsusc.2009.06.062
- Nam V., Lee D. // Nanomaterials. 2016. V. 6. № 3. P. 47. https://doi.org/10.3390/nano6030047
- Wang Y., Yin Z. // Appl. Sci. Converg. Technol. 2019. V. 28. № 6. P. 186. https://doi.org/10.5757/ASCT.2019.28.6.186
- Cuya Huaman J.L., Urushizaki I., Jeyadevan B. // J. Nanomater. 2018. V. 2018. P. 1. https://doi.org/10.1155/2018/1698357
- Fiévet F., Ammar-Merah S., Brayner R. et al. // Chem. Soc. Rev. 2018. V. 47. № 14. P. 5187. https://doi.org/10.1039/C7CS00777A
- Zhang J., Li X., Liu D. et al. // Nanoscale. 2019. V. 11. № 24. P. 11902. https://doi.org/10.1039/C9NR01470E
- Zheng Y., Chen N., Wang C. et al. // Nanomaterials. 2018. V. 8. № 4. P. 192. https://doi.org/10.3390/nano8040192
- Zhao S., Han F., Li J. et al. // Small. 2018. V. 14. № 26. https://doi.org/10.1002/smll.201800047
- Ravi Kumar D.V., Kim I., Zhong Z. et al. // Phys. Chem. Chem. Phys. 2014. V. 16. № 40. P. 22107. https://doi.org/10.1039/C4CP03880K
- Won Y., Kim A., Yang W. et al. // NPG Asia Mater. 2014. V. 6. № 9. P. E132. https://doi.org/10.1038/am.2014.88
- Zhang Y., Guo J., Xu D. et al. // Nano Res. 2018. V. 11. № 7. P. 3899. https://doi.org/10.1007/s12274-018-1966-3
- Cui F., Dou L., Yang Q. et al. // J. Am. Chem. Soc. 2017. V. 139. № 8. P. 3027. https://doi.org/10.1021/jacs.6b11900
- Yokoyama S., Motomiya K., Jeyadevan B. et al. // J. Colloid Interface Sci. 2018. V. 531. P. 109. https://doi.org/10.1016/j.jcis.2018.07.036
- Liu X., Yang C., Yang W. et al. // J. Mater. Sci. 2021. V. 56. № 9. P. 5520. https://doi.org/10.1007/s10853-020-05617-z
- Lu P.-W., Jaihao C., Pan L.-C. et al. // Polymers (Basel). 2022. V. 14. № 16. P. 3369. https://doi.org/10.3390/polym14163369
- Luo M., Zhou M., Rosa da Silva R. et al. // Chem. Nano. Mat. 2017. V. 3. № 3. P. 190. https://doi.org/10.1002/cnma.201600337
- Deng D., Cheng Y., Jin Y. et al. // J. Mater. Chem. 2012. V. 22. № 45. P. 23989. https://doi.org/10.1039/c2jm35041f
Supplementary files
