Structural transitions during thermal destruction in the family of zinc fluoridozirconate crystal hydrates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The structure of ZnZrF6 · 6H2O and ZnZrF6 · 5H2O (high- and low-temperature forms) crystal hydrates and their products of thermal destruction: ZnZrF6 · 4H2O, ZnZrF6 · 2H2O, ZnZrF6 and ZnZr2F10 · 2H2O have been studied. With the exception of ZnZr2F10 · 2H2O, the compounds of ZnZrF6 · nH2O (n = 6, 5, 4, 2, 0) are isostructural to their formula analogues: NiZrF6 · 6H2O, α- and β-MgZrF6 · 5H2O, CuZrF6 · 4H2O, MgZrF6 · 2H2O, MgZrF6, respectively. The structure of ZnZr2F10 · 2H2O is built from unique infinite network anionic layers [Zr2F10]2–, in which ZrF8 square antiprisms are formed tetranuclear cycles and are shared six of their vertices with four neighboring Zr-polyhedra according to the law “…–edge–edge–vertex–vertex–…”; ZnF4(H2O)2-octahedra link Zr-layers to each other into a framework.

Full Text

Restricted Access

About the authors

K. A. Saiankina

Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences

Author for correspondence.
Email: kseniyag@ich.dvo.ru
Russian Federation, Vladivostok, 690022

N. A. Didenko

Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences

Email: kseniyag@ich.dvo.ru
Russian Federation, Vladivostok, 690022

N. N. Savchenko

Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences

Email: kseniyag@ich.dvo.ru
Russian Federation, Vladivostok, 690022

A. V. Gerasimenko

Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences

Email: kseniyag@ich.dvo.ru
Russian Federation, Vladivostok, 690022

References

  1. Ferraris G., Franchini-Angela M. // Acta Crystallogr., Sect. B: Struct. Sci. 1972. V. 28. №12. P. 3572. https://doi.org/10.1107/s0567740872008362
  2. Chiari G., Ferraris G. // Acta Crystallogr., Sect. B: Struct. Sci. 1982. V. 38. № 9. P. 2331. https://doi.org/10.1107/s0567740882008747
  3. Gillon A.L., Feeder N., Davey R. J., Storey R. // Cryst. Growth Des. 2003. V. 3. № 5. P. 663. https://doi.org/10.1021/cg034088e
  4. Банару А.М., Словохотов Ю.Л. // ЖСХ. 2015. Т. 56. № 5. С. 1024.
  5. Desiraju G.R. // J. Chem. Soc., Chem. Commun. 1991. V. 6. P. 426. https://doi.org/10.1039/C39910000426
  6. Tian F., Qu H., Zimmermann A., Munk T., Jørgensen A.C., Rantanen J. // J. Pharm. Pharmacol. 2010. V. 62. № 11. P. 1534. https://doi.org/10.1111/j.2042-7158.2010.01186.x
  7. Vyazovkin S. // Int. Rev. Phys. Chem. 2020. V. 39. № 1. P. 35. https://doi.org/10.1080/0144235x.2019
  8. Preturlan G.D., Vieille L., Quiligotti S., Favergeon L. // J. Phys. Chem. C. 2020. V. 124. № 48. P. 26352. https://doi.org/10.1021/acs.jpcc.0c09041
  9. Clarke H.D., Arora K.K., Bass H., Kavuru P., Ong T.T., Pujari T., Wojtas L., Zaworotko M. // Cryst. Growth Des. 2010. V.10. № 5. P. 2152. https://doi.org/10.1021/cg901345u
  10. Bajpai A., Scott H.S., Pham T., Chen K.-J., Space B., Lusi M., Perry M.L., Zaworotko M.J. // IUCrJ. 2016. V. 3. № 6. P. 430. https://doi.org/10.1107/S2052252516015633
  11. Sogütoglu L.C., Donkers P.A.J., Fischer H.R., Huinink H.P., Adan O.C.G. // Appl. Energy. 2018. V. 215. P. 159. https://doi.org/10.1016/j.apenergy.2018.01.083
  12. Kant K., Shukla A., Smeulders D.M.J., Rindt C.C.M. // J. Energy Storage. 2021. V. 38. P.102563. https://doi.org/10.1016/j.est.2021.102563
  13. Mazur N., Huinink H., Borm B., Sansota S., Fischer H., Adan O. // Thermochim. Acta. 2022. V. 715. P.179286. https://doi.org/10.1016/j.tca.2022.179286
  14. Войт Е.И., Диденко Н.А., Гайворонская К.А., Герасименко А.В. // Оптика и спектроскопия. 2016. Т. 121. № 2. С. 248. https://doi.org/10.1134/S0030400X16080233
  15. Диденко Н.А., Войт Е.И., Саянкина К.А. // Вестник ДВО РАН. 2020. № 6. С. 61. http://vestnikdvo.ru/index.php/vestnikdvo/article/view/675
  16. Годнева М.М., Мотов Д.Л., Кузнецов В.Я., Рыськина М.П. // Журн. неорган. хим. 2004. Т. 49. № 7. С. 1198.
  17. Halasyamani P., Willis M.J., Stern C.L., Poeppelmeier K.R. // Inorg. Chim. Acta. 1995. V. 240. № 1–2. P. 109. https://doi.org/10.1016/0020-1693(95)04650-XGet rights and content
  18. Gerasimenko A.V., Gaivoronskaya K.A., Slobodyuk A.B., Didenko N.A. // Z. Anorg. Allg. Chem. 2017. V. 643. № 22. P. 1785. https://doi.org/10.1002/zaac.201700166
  19. Диденко Н.А., Гайворонская К.А., Войт Е.И., Герасименко А.В., Кавун В.Я. // Журн. неорган. хим. 2010. Т. 55. № 9. С. 1420.
  20. Fischer J., Weiss R. // Acta Crystallogr., Sect. B: Struct. Sci. 1973. V. 29. P. 1955. https://doi.org/10.1107/S0567740873005820
  21. Köhl P., Reinen D., Decher G. Weiss B. // Zeitschrift für Krist. 1980. V. 153. № 3–4. P. 211. https://doi.org/10.1524/zkri.1980.153.3-4.211
  22. Rodriguez V., Couzi M., Tressaud A., Grannec J., Chaminade J.P., Soubeyroux J.L. // J. Phys. Condens. Matter. 1990. V. 2. № 36. P. 7373. http://iopscience.iop.org/0953-8984/2/36/001
  23. Voit E.I., Didenko N.A., Gerasimenko A.V., Slobodyuk A.B. // J. Fluorine Chem. 2020. V.232. P. 109475. https://doi.org/10.1016/j.jfluchem.2020.109475
  24. Nakhal S., Bredow T., Lerch M. // Z. anorg. allg. Chem. 2015. V. 641. № 6. P. 1036. https://doi.org/10.1002/chin.201531003
  25. Bruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  26. Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Crystallogr. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
  27. Sheldrick G.M. // Acta Crystallogr., Sect. С: Structural Chemistry. 2015. V. 71. P. 3. https:// doi.org/10.1107/S2053229614024218
  28. STOE (2008). WinXpow, STOE & CIE GmbH, Hilpertstraße 10, D-64295 Darmstadt.
  29. Bruker (2008). DIFRAC+. Bruker AXS Inc., Madison, Wisconsin, USA.
  30. Petricek V., Dusek M., Palatinus L. // Z. Kristallogr. 2014. V. 229. P. 345. https://doi.org/10.1515/zkri-2014-1737
  31. Simonov V.I., Bukvetsky B.V. // Acta Crystallogr., Sect. B: Struct. Sci. 1978. V.34. P. 355. https://doi.org/10.1107/S0567740878003131
  32. Fischer J., Keib G., Weiss R. // Acta Crystallogr., Sect. B: Struct. Sci. 1967. V. 22. № 3. P. 338. https://doi.org/10.1107/S0365110X67000659
  33. Clark M.J.R., Fleming J.E., Lynton H. // Can. J. Chem. 1969. V. 47. P. 3859. https://doi.org/10.1139/v69-642
  34. Fischer J., Cian A., Weiss R. // Bull. Soc. Chim. Fr. 1966. V. 8. P. 2646.
  35. Heier K.R., Poeppelmeier K.R. // J. Solid State Chem. 1997. V. 133. № 2. P. 576. https://doi.org/10.1006/jssc.1997.7529
  36. Laptash N.M., Udovenko A.A., Vasiliev A.D., Merkulov E.B. // J. Solid State Chem. 2023. V. 318. P. 123781. https://doi.org/10.1016/j.jssc.2022.123781
  37. Burns J.H. // Acta Crystallogr., Sect. B: Struct. Sci. 1962. V. 15. P. 1098. https://doi.org/10.1107/S0365110X62002935
  38. Mayer H.W., Reinen D. // J. Solid State Chem. 1983. V. 50. № 2. P. 213. https://doi.org/10.1016/0022-4596(83)90190-1
  39. Teufer G. // Acta Crystallogr., Sect. B: Struct. Sci. 1956. V. 9. P. 539. https://doi.org/10.1107/S0365110X56001509
  40. Hester B.R., Hancock J.C., Lapidus S.H., Wilkinson A.P. // Chem. Mater. 2017. V. 29. № 2. P 823. https://doi.org/10.1021/acs.chemmater.6b04809
  41. Gao Y., Guery J., Le Bail A., Jacoboni C. // J. Solid State Chem. 1992. V. 98. № 1. P. 11. https://doi.org/10.1016/0022-4596(92)90065-4

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Application
Download (1MB)
3. Fig. 1. Complex anions [ZrF6]2– — (a) and cations [Zn(H2O)6]2+ — (b) in structure I.

Download (12KB)
4. Fig. 2. Fragment of the Zr–Zn chain in structure II.

Download (16KB)
5. Fig. 3. Crystal structures: III — (a) and IV — (b).

Download (59KB)
6. Fig. 4. Fragment of the Zr–Zn chain in structure V — (a) and in VI — (b).

Download (40KB)
7. Fig. 5. The system of H-bonds between H2O molecules in structures V– (a) and VI — (b).

Download (28KB)
8. Fig. 6. Fragment of the Zr–Zn layer in structure VII — (a) and crystal structure VII — (b).

Download (52KB)

Copyright (c) 2025 Russian Academy of Sciences